scholarly journals Hawking temperature in the eternal BTZ black hole: an example of holography in AdS spacetime

2012 ◽  
Vol 45 (2) ◽  
pp. 427-448 ◽  
Author(s):  
L. Ortíz
2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Parthapratim Pradhan

We have examined the thermodynamic volume products for spherically symmetric and axisymmetric spacetime in the framework of extended phase space. Such volume products are usually formulated in terms of the outer horizon (H+) and the inner horizon (H-) of black hole (BH) spacetime. Besides volume product, the other thermodynamic formulations like volume sum, volume minus, and volume division are considered for a wide variety of spherically symmetric spacetime and axisymmetric spacetime. Like area (or entropy) product of multihorizons, the mass-independent (universal) features of volume products sometimes also fail. In particular, for a spherically symmetric AdS spacetime, the simple thermodynamic volume product of H± is not mass-independent. In this case, more complicated combinations of outer and inner horizon volume products are indeed mass-independent. For a particular class of spherically symmetric cases, i.e., Reissner Nordström BH of Einstein gravity and Kehagias-Sfetsos BH of Hořava Lifshitz gravity, the thermodynamic volume products of H± are indeed universal. For axisymmetric class of BH spacetime in Einstein gravity, all the combinations are mass-dependent. There has been no chance to formulate any combinations of volume product relation to be mass-independent. Interestingly, only the rotating BTZ black hole in 3D provides that the volume product formula is mass-independent, i.e., universal, and hence it is quantized.


2006 ◽  
Vol 21 (22) ◽  
pp. 1737-1748 ◽  
Author(s):  
Y. S. MYUNG ◽  
H. W. LEE

We study the wave equation for a massive scalar in three-dimensional AdS-black hole spacetimes to understand the unitarity issues in a semiclassical way. Here we introduce four interesting spacetimes: the non-rotating BTZ black hole (NBTZ), pure AdS spacetime (PADS), massless BTZ black hole (MBTZ), and extremal BTZ black hole (EBTZ). Our method is based on the potential analysis and solving the wave equation to find the condition for the frequency ω exactly. In the NBTZ case, one finds the quasinormal (complex and discrete) modes which signals for a non-unitary evolution. Real and discrete modes are found for the PADS case, which means that it is unitary obviously. On the other hand, we find real and continuous modes for the two extremal black holes of MBTZ and EBTZ. It suggests that these could be candidates for the unitary system.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hwajin Eom ◽  
Wontae Kim

Abstract In three-dimensional AdS space, we consider the gravitational collapse of dust shell and then investigate the quantum radiation from the collapsing shell by employing the functional Schrödinger formalism. In the formation of the BTZ black hole, the interior geometry of the shell can be chosen as either the massless black hole or the global AdS space. In the incipient black hole limit, we obtain the wave function exactly from the time-dependent Schrödinger equation for a massless scalar field. Then, we show that the occupation number of excited states can be written by analytic expressions, and the radiation temperature is in agreement with the Hawking temperature, irrespective of the specific choice of the interior geometries.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050208
Author(s):  
Ganim Gecim

In this paper, we investigated the quantum gravity effects on the thermal properties of the [Formula: see text]-dimensional noncommutative rotating Banados–Teitelboim–Zanelli (NCR-BTZ) black hole in the context of quantum tunneling of relativistic particles. These include Hawking temperature, the thermally local and global stability conditions, and the phase transitions. For this purpose, in the framework of the generalized uncertainty principle (GUP), we used the Hamilton–Jacobi approach to calculate the tunneling probability for a massive scalar, Dirac, and vector boson particles from the [Formula: see text]-dimensional NCR-BTZ black hole. We found that the modified Hawking temperature of the black hole depends on the black hole properties, on the tunneling particle properties, on the noncommutative parameter, and on the GUP parameter. Using the modified Hawking temperature, we calculated the modified heat capacity, and then we discussed the local thermodynamic stability conditions for the black hole. The black hole may undergo a first-type phase transition to become stable under the scalar particle tunneling whereas, it might undergoes both the first and the second-type phase transitions under the both Dirac and vector boson particles tunneling process. Furthermore, we calculated the Gibbs free energy of the black hole, and we investigated the global stability conditions. We observed that Hawking–Page phase transition may occur in the presence of the quantum gravity effect under the tunneling process of scalar, Dirac, and vector boson particles. In the context of quantum gravity effect, we also derived the modified equation of state to investigate the critical behavior of the commutative rotating BTZ black hole. Finally, we shown that Van der Waals-like phase transition may occur in the context of tunneling process of both Dirac and vector boson particle, whereas it may not occur for the tunneling of scalar particle.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050018
Author(s):  
T. Ibungochouba Singh ◽  
Y. Kenedy Meitei ◽  
I. Ablu Meitei

The Hawking radiation of BTZ black hole is investigated based on generalized uncertainty principle effect by using Hamilton–Jacobi method and Dirac equation. The tunneling probability and the Hawking temperature of the spin-1/2 particles of the BTZ black hole are investigated using the modified Dirac equation based on the GUP. The modified Hawking temperature for fermion crossing the black hole horizon includes the mass parameter of the black hole, angular momentum, energy and also outgoing mass of the emitted particle. Besides, considering the effect of GUP into account, the modified Hawking radiation of massless particle from a BTZ black hole is investigated using Damour and Ruffini method, tortoise coordinate transformation and modified Klein–Gordon equation. The relation between the modified Hawking temperature obtained by using Damour–Ruffini method and the energy of the emitted particle is derived. The original Hawking temperature is also recovered in the absence of quantum gravity effect. There is a possibility of negative Hawking temperature for emission of Dirac particles under quantum gravity effects.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Ge-Rui Chen ◽  
Shiwei Zhou ◽  
Yong-Chang Huang

In this paper we investigate vector particles' Hawking radiation from a Banados–Teitelboim–Zanelli (BTZ) black hole. By applying the Wentzel–Kramers–Brillouin (WKB) approximation and the Hamilton–Jacobi ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles. The expected Hawking temperature is recovered.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Hsu-Wen Chiang ◽  
Yu-Hsien Kung ◽  
Pisin Chen

Abstract One interesting proposal to solve the black hole information loss paradox without modifying either general relativity or quantum field theory, is the soft hair, a diffeomorphism charge that records the anisotropic radiation in the asymptotic region. This proposal, however, has been challenged, given that away from the source the soft hair behaves as a coordinate transformation that forms an Abelian group, thus unable to store any information. To maintain the spirit of the soft hair but circumvent these obstacles, we consider Hawking radiation as a probe sensitive to the entire history of the black hole evaporation, where the soft hairs on the horizon are induced by the absorption of a null anisotropic flow, generalizing the shock wave considered in [1, 2]. To do so we introduce two different time-dependent extensions of the diffeomorphism associated with the soft hair, where one is the backreaction of the anisotropic null flow, and the other is a coordinate transformation that produces the Unruh effect and a Doppler shift to the Hawking spectrum. Together, they form an exact BMS charge generator on the entire manifold that allows the nonperturbative analysis of the black hole horizon, whose surface gravity, i.e. the Hawking temperature, is found to be modified. The modification depends on an exponential average of the anisotropy of the null flow with a decay rate of 4M, suggesting the emergence of a new 2-D degree of freedom on the horizon, which could be a way out of the information loss paradox.


Sign in / Sign up

Export Citation Format

Share Document