scholarly journals UNITARITY ISSUE IN BTZ BLACK HOLES

2006 ◽  
Vol 21 (22) ◽  
pp. 1737-1748 ◽  
Author(s):  
Y. S. MYUNG ◽  
H. W. LEE

We study the wave equation for a massive scalar in three-dimensional AdS-black hole spacetimes to understand the unitarity issues in a semiclassical way. Here we introduce four interesting spacetimes: the non-rotating BTZ black hole (NBTZ), pure AdS spacetime (PADS), massless BTZ black hole (MBTZ), and extremal BTZ black hole (EBTZ). Our method is based on the potential analysis and solving the wave equation to find the condition for the frequency ω exactly. In the NBTZ case, one finds the quasinormal (complex and discrete) modes which signals for a non-unitary evolution. Real and discrete modes are found for the PADS case, which means that it is unitary obviously. On the other hand, we find real and continuous modes for the two extremal black holes of MBTZ and EBTZ. It suggests that these could be candidates for the unitary system.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Niloofar Abbasvandi ◽  
Masoumeh Tavakoli ◽  
Robert B. Mann

Abstract We investigate the thermodynamic behaviour of Lorentzian Dyonic Taub-NUT Black Hole spacetimes. We consider two possibilities in their description: one in which their entropy is interpreted to be one quarter of the horizon area (the horizon entropy), and another in which the Misner string also contributes to the entropy (the Noether charge entropy). We find that there can be as many as three extremal black holes (or as few as zero) depending on the choice of parameters, and that the dependence of the free energy on temperature — and the resultant phase behaviour — depends very much on which of these situations holds. Some of the phase behaviour we observe holds regardless of which interpretation of the entropy holds. However another class of phase transition structures occurs only if the Noether charge interpretation of the entropy is adopted.


2020 ◽  
pp. 85-114
Author(s):  
Piotr T. Chruściel

The aim of this chapter is to present key applications of causality theory, as relevant to black-hole spacetimes. For this we need to introduce the concept of conformal completions, which is done in Section 3.1. We continue, in Section 3.2, with a review of the null splitting theorem of Galloway. Section 3.3 contains complete proofs of a few versions of the topological censorship theorems, which are otherwise scattered across the literature, and which play a basic role in understanding the topology of black holes. In Section 3.4 we review some key incompleteness theorems, also known under the name of singularity theorems. Section 3.5 is devoted to the presentation of a few versions of the area theorem, which is a cornerstones of ‘black-hole thermodynamics’. We close this chapter with a short discussion of the role played by causality theory when studying the wave equation.


2009 ◽  
Vol 24 (16n17) ◽  
pp. 3111-3135 ◽  
Author(s):  
MU-IN PARK

Hawking's area theorem can be understood from a quasistationary process in which a black hole accretes positive energy matter, independent of the details of the gravity action. I use this process to study the dynamics of the inner as well as the outer horizons for various black holes which include the recently discovered exotic black holes and three-dimensional black holes in higher derivative gravities as well as the usual Banados–Teitelboim–Zanelli (BTZ) black hole and the Kerr black hole in four dimensions. I find that the area for the inner horizon "can decrease," rather than increase, with the quasistationary process. However, I find that the area for the outer horizon "never decrease" such as the usual area theorem still works in our examples, though this is quite nontrivial in general. I also find that the recently proposed new entropy formulae for the above mentioned, recently discovered black holes satisfy the second law of thermodynamics.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Hwajin Eom ◽  
Wontae Kim

Abstract In three-dimensional AdS space, we consider the gravitational collapse of dust shell and then investigate the quantum radiation from the collapsing shell by employing the functional Schrödinger formalism. In the formation of the BTZ black hole, the interior geometry of the shell can be chosen as either the massless black hole or the global AdS space. In the incipient black hole limit, we obtain the wave function exactly from the time-dependent Schrödinger equation for a massless scalar field. Then, we show that the occupation number of excited states can be written by analytic expressions, and the radiation temperature is in agreement with the Hawking temperature, irrespective of the specific choice of the interior geometries.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Mohsen Fathi ◽  
Samuel Lepe ◽  
J. R. Villanueva

AbstractIn this paper we analyze some interesting features of the thermodynamics of the rotating BTZ black hole from the Carathéodory axiomatic postulate, for which, we exploit the appropriate Pfaffian form. The allowed adiabatic transformations are then obtained by solving the corresponding Cauchy problem, and are studied accordingly. Furthermore, we discuss the implications of our approach, regarding the second and third laws of black hole thermodynamics. In particular, the merging of two extremal black holes is studied in detail.


2015 ◽  
Vol 12 (02) ◽  
pp. 1550017 ◽  
Author(s):  
A. Belhaj ◽  
M. Chabab ◽  
H. El Moumni ◽  
K. Masmar ◽  
M. B. Sedra

The principal focus of the present work concerns the critical behaviors of a class of three-dimensional (3D) black holes with a scalar field hair. Since the cosmological constant is viewed as a thermodynamic pressure and its conjugate quantity as a volume, we examine such properties in terms of two parameters B and a. The latters are related to the scalar field and the angular momentum, respectively. In particular, we give the equation of state predicting a critical universal number depending on the (B, a) moduli space. In the vanishing limit of the B parameter, we recover the usual perfect gas behavior appearing in the case of the non-rotating BTZ black hole. We point out that in a generic region of the (B, a) moduli space, the model behaves like a Van der Waals system.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242009 ◽  
Author(s):  
MARCELO BOTTA CANTCHEFF

We argue that a nonperturbative description of quantum gravity should involve two (noninteracting) copies of a dual field theory on the boundary, and describe the states of the spacetimes accordingly. So, for instance, a complete description of the asymptotically Anti-de-Sitter (AdS) spacetimes is given by two copies of the conformal field theory (CFT) associated to the global AdS spacetime. We also argue that, in this context, gravitational collapse and formation of a black hole may be described by unitary evolution of the dual nonperturbative degrees of freedom.


2018 ◽  
Vol 168 ◽  
pp. 03009
Author(s):  
Hideki Maeda

By the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area/entropy spectra for the Schwarzschild-Tangherlini-type asymptotically flat or AdS vacuum black hole in arbitrary dimensions. Using the WKB approximation for black holes with large mass, we show that area/entropy is equally spaced for asymptotically flat black holes, while mass is equally spaced for asymptotically AdS black holes. Exact spectra can be obtained for toroidal AdS black holes in arbitrary dimensions including the three-dimensional BTZ black hole.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


Sign in / Sign up

Export Citation Format

Share Document