cosmological constants
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Laurenţiu Bubuianu ◽  
Sergiu I. Vacaru ◽  
Elşen Veli Veliev

AbstractWe construct nonassociative quasi-stationary solutions describing deformations of Schwarzschild black holes, BHs, to ellipsoid configurations, which can be black ellipsoids, BEs, and/or BHs with ellipsoidal accretion disks. Such solutions are defined by generic off-diagonal symmetric metrics and nonsymmetric components of metrics (which are zero on base four dimensional, 4-d, Lorentz manifold spacetimes but nontrivial in respective 8-d total (co) tangent bundles). Distorted nonassociative BH and BE solutions are found for effective real sources with terms proportional to $$\hbar \kappa $$ ħ κ (for respective Planck and string constants). These sources and related effective nontrivial cosmological constants are determined by nonlinear symmetries and deformations of the Ricci tensor by nonholonomic star products encoding R-flux contributions from string theory. To generate various classes of (non) associative /commutative distorted solutions we generalize and apply the anholonomic frame and connection deformation method for constructing exact and parametric solutions in modified gravity and/or general relativity theories. We study properties of locally anisotropic relativistic, optically thick, could and thin accretion disks around nonassociative distorted BHs, or BEs, when the effects due to the rotation are negligible. Such configurations describe angular anisotropic deformations of axially symmetric astrophysical models when the nonassociative distortions are related to the outer parts of the accretion disks.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mehmet Demirtas ◽  
Manki Kim ◽  
Liam McAllister ◽  
Jakob Moritz ◽  
Andres Rios-Tascon

Abstract We construct supersymmetric AdS4 vacua of type IIB string theory in compactifications on orientifolds of Calabi-Yau threefold hypersurfaces. We first find explicit orientifolds and quantized fluxes for which the superpotential takes the form proposed by Kachru, Kallosh, Linde, and Trivedi. Given very mild assumptions on the numerical values of the Pfaffians, these compactifications admit vacua in which all moduli are stabilized at weak string coupling. By computing high-degree Gopakumar-Vafa invariants we give strong evidence that the α′ expansion is likewise well-controlled. We find extremely small cosmological constants, with magnitude < 10−123 in Planck units. The compactifications are large, but not exponentially so, and hence these vacua manifest hierarchical scale-separation, with the AdS length exceeding the Kaluza-Klein length by a factor of a googol.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
G. Dall’Agata ◽  
G. Inverso ◽  
D. Partipilo

Abstract We look for critical points with U(2) residual symmetry in 5-dimensional maximally supersymmetric gauged supergravity, by varying the embedding tensor, rather than directly minimizing the scalar potential. We recover all previously known vacua and we find four new vacua, with different gauge groups and cosmological constants. We provide the first example of a maximal supergravity model in D ≥ 4 having critical points with both positive and vanishing cosmological constant. For each vacuum we also compute the full mass spectrum. All results are analytic.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Kyung Kiu Kim ◽  
Jong-Hyun Baek ◽  
Yunseok Seo

Abstract In this paper we study a black hole phase transition in a generalized JT gravity noticed in arXiv:2006.03494. We investigate the effect of the phase transition on the Euclidean geodesic and holographic two-point function in models with dilaton potential which interpolates two ordinary JT gravities with different cosmological constants. It is noted that there exists a closed geodesic with a new scale at low temperature phase when the potential has a locally negative region. This scale causes several peaks in the two-point function. We also comment on the phase transition of charged black holes. We then consider coupling generalized JT gravity to a matter and study its relation to a $$ T\overline{T} $$ T T ¯ deformation of CFT at the classical level. We find the deformation parameter as a function of the dilaton and provide examples showing Janus-type couplings.


2020 ◽  
Vol 17 (06) ◽  
pp. 2050076
Author(s):  
Alnadhief H. A. Alfedeel ◽  
Amare Abebe

The homogeneous and anisotropic Bianchi type-V cosmological model with variable gravitational and cosmological “constants” with a general (nonstiff) perfect fluid is investigated. The Einstein field equations (EFEs) are numerically integrated with the fourth-order Runge–Kutta method for different values of [Formula: see text] and [Formula: see text] parameters of quantum fields in a curved and expanding background. Three realistic models, namely matter, radiation and phantom dark energy models are also discussed. In all these models, it was found that the cosmological “constant” decreases with time, whereas the gravitational “constant” increases over time. It is shown that the universe in these models becomes isotropic at late times.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 45 ◽  
Author(s):  
Sergey G. Rubin

The extra space paradigm plays a significant role in modern physics and cosmology as a specific case. In this review, the relation between the main cosmological parameters—the Planck mass and the Cosmological constants—and a metric of extra space is discussed. Matter distribution inside extra space and its effect on the 4-dimensional observational parameters is of particular interest. The ways to solve the fine-tuning problem and the hierarchy problem are analyzed.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 41 ◽  
Author(s):  
Farkhat Zaripov

The paper studies the modified theory of induced gravity (MTIG). The solutions of the MTIG equations contain two branches (stages): Einstein (ES) and “restructuring” (RS). Previously, solutions were found that the values of such parameters as the “Hubble parameter”, gravitational and cosmological “constants” at the RS stage, fluctuate near monotonously developing mean values. This article gives MTIG equations with arbitrary potential. Solutions of the equations of geodesic curves are investigated for the case of centrally symmetric space and quadratic potential at the RS stage. The oscillatory nature of the solutions leads to the appearance of a gravitational potential containing a spectrum of minima, as well as to antigravity, which is expressed by acceleration directed from the center. Such solutions lead to the distribution of the potential of the gravitational field creating an additional mass effect at large distances and are well suited for modeling the effect of dark matter in galaxies. The solutions of the equation of geodesic lines are obtained and analyzed. We found that the transition from flat asymptotics to oscillatory asymptotics at large distances from the center with a combination of the presence of antigravity zones leads to a rich variety of shapes and dynamics of geodesic curves and to the formation of complex structures.


2019 ◽  
Vol 34 (29) ◽  
pp. 1950176
Author(s):  
Su-Kuan Chu ◽  
Chen-Te Ma ◽  
Chih-Hung Wu

We report a holographic study of a two-dimensional dilaton gravity theory with the Dirichlet boundary condition for the cases of nonvanishing and vanishing cosmological constants. Our result shows that the boundary theory of the two-dimensional dilaton gravity theory with the Dirichlet boundary condition for the case of nonvanishing cosmological constants is the Schwarzian term coupled to a dilaton field, while for the case of vanishing cosmological constant, a theory does not have a kinetic term. We also include the higher derivative term [Formula: see text], where [Formula: see text] is the scalar curvature that is coupled to a dilaton field. We find that the form of the boundary theory is not modified perturbatively. Finally, we show that a lattice holographic picture is realized up to the second-order perturbation of boundary cutoff [Formula: see text] under a constant boundary dilaton field and the nonvanishing cosmological constant by identifying the lattice spacing [Formula: see text] of a lattice Schwarzian theory with the boundary cutoff [Formula: see text] of the two-dimensional dilaton gravity theory.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Farkhat Zaripov

This work is the extension of author’s research, where the modified theory of induced gravity (MTIG) is proposed. In the framework of the MTIG, the mechanism of phase transitions and the description of multiphase behavior of the cosmological scenario are proposed. The theory describes two systems (stages): Einstein (ES) and “restructuring” (RS). This process resembles the phenomenon of a phase transition, where different phases (Einstein’s gravitational systems, but with different constants) pass into each other. The hypothesis that such transitions are random and lead to stochastic behavior of cosmological parameters is considered. In our model, effective gravitational and cosmological “constants” arise, which are defined by the “mean square” of the scalar fields. These parameters can be compared with observations related to the phenomenon of dark energy. The aim of the work is to solve equations of MTIG for the case of a quadratic potential and compare them with observational cosmology data. The interaction of fundamental scalar fields and matter in the form of an ideal fluid is introduced and investigated. For the case of Friedmann-Robertson-Walker space-time, numerical solutions of nonlinear MTIG equations are obtained using the qualitative theory of dynamical systems and mathematical computer programs. For the case of a linear potential, examples joining of solutions, the ES and RS stages, of the evolution of the cosmological model are given. It is shown that the values of such parameters as “Hubble parameter” and gravitational and cosmological “constants” in the RS stage contain solutions oscillating near monotonically developing averages or have stochastic behavior due to random transitions to different stages (RS or ES). Such a stochastic behavior might be at the origin of the tension between CMB measurements of the value of the Hubble parameter today and its local measurements.


Sign in / Sign up

Export Citation Format

Share Document