scholarly journals TeV-scale seesaw model with a loop-induced Dirac mass term and dark matter fromU(1)B−Lgauge symmetry breaking

2012 ◽  
Vol 85 (3) ◽  
Author(s):  
Shinya Kanemura ◽  
Takehiro Nabeshima ◽  
Hiroaki Sugiyama
2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Borna Salehian ◽  
Mohammad Ali Gorji ◽  
Hassan Firouzjahi ◽  
Shinji Mukohyama

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


2015 ◽  
Vol 14 (3) ◽  
pp. 318-324 ◽  
Author(s):  
Ilija Zeljkovic ◽  
Yoshinori Okada ◽  
Maksym Serbyn ◽  
R. Sankar ◽  
Daniel Walkup ◽  
...  

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Partha Konar ◽  
Ananya Mukherjee ◽  
Abhijit Kumar Saha ◽  
Sudipta Show

Abstract We propose an appealing alternative scenario of leptogenesis assisted by dark sector which leads to the baryon asymmetry of the Universe satisfying all theoretical and experimental constraints. The dark sector carries a non minimal set up of singlet doublet fermionic dark matter extended with copies of a real singlet scalar field. A small Majorana mass term for the singlet dark fermion, in addition to the typical Dirac term, provides the more favourable dark matter of pseudo-Dirac type, capable of escaping the direct search. Such a construction also offers a formidable scope to radiative generation of active neutrino masses. In the presence of a (non)standard thermal history of the Universe, we perform the detailed dark matter phenomenology adopting the suitable benchmark scenarios, consistent with direct detection and neutrino oscillations data. Besides, we have demonstrated that the singlet scalars can go through CP-violating out of equilibrium decay, producing an ample amount of lepton asymmetry. Such an asymmetry then gets converted into the observed baryon asymmetry of the Universe through the non-perturbative sphaleron processes owing to the presence of the alternative cosmological background considered here. Unconventional thermal history of the Universe can thus aspire to lend a critical role both in the context of dark matter as well as in realizing baryogenesis.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740001 ◽  
Author(s):  
Maxim Yu. Khlopov

In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.


2016 ◽  
Vol 93 (11) ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada ◽  
Yuta Orikasa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document