scholarly journals Radiative corrections to the neutralino dark matter relic density: An effective coupling approach

2012 ◽  
Vol 86 (10) ◽  
Author(s):  
Arindam Chatterjee ◽  
Manuel Drees ◽  
Suchita Kulkarni
2016 ◽  
Author(s):  
Julia Harz ◽  
Bjorn Herrmann ◽  
Michael Klasen ◽  
Karol Kovarik ◽  
P. Steppeler

2018 ◽  
Vol 33 (29) ◽  
pp. 1850181 ◽  
Author(s):  
Saleh Hamdan ◽  
James Unwin

We highlight the general scenario of dark matter freeze-out while the energy density of the universe is dominated by a decoupled non-relativistic species. Decoupling during matter domination changes the freeze-out dynamics, since the Hubble rate is parametrically different for matter and radiation domination. Furthermore, for successful Big Bang Nucleosynthesis the state dominating the early universe energy density must decay, this dilutes (or repopulates) the dark matter. As a result, the masses and couplings required to reproduce the observed dark matter relic density can differ significantly from radiation-dominated freeze-out.


2012 ◽  
Vol 27 (32) ◽  
pp. 1250188 ◽  
Author(s):  
ARGHYA CHOUDHURY ◽  
AMITAVA DATTA

Using the ATLAS 4.7 fb-1 data on new physics search in the jets + [Formula: see text] channel, we obtain new limits on the lighter top squark [Formula: see text] considering all its decay modes assuming that it is the next to lightest supersymmetric particle (NLSP). If the decay [Formula: see text] dominates and the production of dark matter relic density is due to NLSP–lightest supersymmetric particle (LSP) co-annihilation then the lower limit on [Formula: see text] is 240 GeV. The limit changes to 200 GeV if the decay [Formula: see text] dominates. Combining these results it follows that [Formula: see text] NLSP induced baryogenesis is now constrained more tightly.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Kento Asai ◽  
Shohei Okawa ◽  
Koji Tsumura

Abstract We study a simple Dirac fermion dark matter model in $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ theory. The new light gauge boson X plays important roles in both dark matter physics and the explanation for the muon g− 2 anomaly. The observed dark matter relic density is realized by a large $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ charge without introducing a resonance effect of the X boson. As a by-product of the model, characteristic neutrino signatures from sub-GeV dark matter ψ are predicted depending on the mass spectrum. We formulate the analysis of $$ \psi \overline{\psi}\to \nu \overline{\nu} $$ ψ ψ ¯ → ν ν ¯ , and of $$ \psi \overline{\psi}\to XX $$ ψ ψ ¯ → XX followed by $$ X\to \nu \overline{\nu} $$ X → ν ν ¯ in a model independent way. The energy spectrum of neutrinos in the former process is monochromatic while in the latter process is bowl-shape. We also evaluate sensitivity at Super-Kamiokande and future Hyper-Kamiokande detectors. The analysis is finally applied to the $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ dark matter model.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Melissa van Beekveld ◽  
Wim Beenakker ◽  
Marrit Schutten ◽  
Jeremy De Wit

In this paper we perform for the first time an in-depth analysis of the spectra in the phenomenological supersymmetric Standard Model that simultaneously offer an explanation for the (g-2)_{\mu}(g−2)μ discrepancy \Delta a_{\mu}Δaμ, result in the right dark-matter relic density \Omega_{DM} h^2ΩDMh2 and are minimally fine-tuned. The resulting spectra may be obtained from [1]. To discuss the experimental exclusion potential for our models, we analyse the resulting LHC phenomenology as well as the sensitivity of dark-matter direct detection experiments to these spectra. We find that the latter type of experiments with sensitivity to the spin-dependent dark-matter–nucleon scattering cross section \sigma_{SD,p}σSD,p will probe all of our found solutions.


Sign in / Sign up

Export Citation Format

Share Document