scholarly journals Massive quasinormal mode in the holographic Lifshitz theory

2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Chanyong Park
2014 ◽  
Vol 29 (24) ◽  
pp. 1430049 ◽  
Author(s):  
Chanyong Park

We review interesting results achieved in recent studies on the holographic Lifshitz field theory. The holographic Lifshitz field theory at finite temperature is described by a Lifshitz black brane geometry. The holographic renormalization together with the regularity of the background metric allows to reproduce thermodynamic quantities of the dual Lifshitz field theory where the Bekenstein–Hawking entropy appears as the renormalized thermal entropy. All results satisfy the desired black brane thermodynamics. In addition, hydrodynamic properties are further reviewed in which the holographic retarded Green functions of the current and momentum operators are studied. In a nonrelativistic Lifshitz field theory, intriguingly, there exists a massive quasinormal mode at finite temperature whose effective mass is linearly proportional to temperature. Even at zero temperature and in the nonzero momentum limit, a quasinormal mode still remains unlike the dual relativistic field theory. Finally, we account for how adding impurity modifies the electric property of the nonrelativistic Lifshitz theory.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1721-1742 ◽  
Author(s):  
V. M. MOSTEPANENKO ◽  
R. S. DECCA ◽  
E. FISCHBACH ◽  
B. GEYER ◽  
G. L. KLIMCHITSKAYA ◽  
...  

The Lifshitz theory of dispersion forces leads to thermodynamic and experimental inconsistencies when the role of drifting charge carriers is included in the model of the dielectric response. Recently modified reflection coefficients were suggested that take into account screening effects and diffusion currents. We demonstrate that this theoretical approach leads to a violation of the third law of thermodynamics (Nernst's heat theorem) for a wide class of materials and is excluded by the data from two recent experiments. The physical reason for its failure is explained by the violation of thermal equilibrium, which is the fundamental applicability condition of the Lifshitz theory, in the presence of drift and diffusion currents.


Author(s):  
Yi Zheng ◽  
Arvind Narayanaswamy

Lifshitz theory of van der Waals (vdW) force and energy is strictly valid when the location at which the stress tensor is calculated is in vacuum. Generalization of Lifshitz theory to the case when the stress tensor is to be calculated in a dissipative material, as opposed to vacuum, is a surprisingly difficult undertaking because there is no expression for the electromagnetic stress tensor in dissipative materials. Here, we derive the expression for vdW force in planar dissipative media by calculating the Maxwell stress tensor in a fictious layer of vacuum, that is eventually made to vanish, introduced in the structure, without employing the complicated quantum field theoretic method proposed by Dzyaloshinskii, Lifshitz, and Pitaevskii. Even though this work has proven to be a corroboration of Dzyaloshinskii et al., it has thrown new light on our understanding of vdW forces and suggests that it should be possible to achieve the similar result for objects with arbitrary shapes.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Victoria Martin ◽  
Andrew Svesko

The heat kernel and quasinormal mode methods of computing 1-loop partition functions of spin ss fields on hyperbolic quotient spacetimes \mathbb{H}^{3}/\mathbb{Z}ℍ3/ℤ are related via the Selberg zeta function. We extend that analysis to thermal \text{AdS}_{2n+1}AdS2n+1 backgrounds, with quotient structure \mathbb{H}^{2n+1}/\mathbb{Z}ℍ2n+1/ℤ. Specifically, we demonstrate the zeros of the Selberg function encode the normal mode frequencies of spin fields upon removal of non-square-integrable modes. With this information we construct the 1-loop partition functions for symmetric transverse traceless tensors in terms of the Selberg zeta function and find exact agreement with the heat kernel method.


1972 ◽  
Vol 34 (1) ◽  
pp. 135-153 ◽  
Author(s):  
S. Nir ◽  
Robert Rein ◽  
L. Weiss
Keyword(s):  

2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


Sign in / Sign up

Export Citation Format

Share Document