scholarly journals Extremal chiral ring states in the AdS/CFT correspondence are described by free fermions for a generalized oscillator algebra

2015 ◽  
Vol 92 (4) ◽  
Author(s):  
David Berenstein
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Kevin Zelaya ◽  
Oscar Rosas-Ortiz ◽  
Zurika Blanco-Garcia ◽  
Sara Cruz y Cruz

The purposes of this work are (1) to show that the appropriate generalizations of the oscillator algebra permit the construction of a wide set of nonlinear coherent states in unified form and (2) to clarify the likely contradiction between the nonclassical properties of such nonlinear coherent states and the possibility of finding a classical analog for them since they are P-represented by a delta function. In (1) we prove that a class of nonlinear coherent states can be constructed to satisfy a closure relation that is expressed uniquely in terms of the Meijer G-function. This property automatically defines the delta distribution as the P-representation of such states. Then, in principle, there must be a classical analog for them. Among other examples, we construct a family of nonlinear coherent states for a representation of the su(1,1) Lie algebra that is realized as a deformation of the oscillator algebra. In (2), we use a beam splitter to show that the nonlinear coherent states exhibit properties like antibunching that prohibit a classical description for them. We also show that these states lack second-order coherence. That is, although the P-representation of the nonlinear coherent states is a delta function, they are not full coherent. Therefore, the systems associated with the generalized oscillator algebras cannot be considered “classical” in the context of the quantum theory of optical coherence.


1997 ◽  
Vol 30 (11) ◽  
pp. 3983-3990
Author(s):  
Piotr Kosinski ◽  
Michal Majewski ◽  
Pawel Maslanka

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Marius de Leeuw ◽  
Chiara Paletta ◽  
Anton Pribytok ◽  
Ana L. Retore ◽  
Alessandro Torrielli

Abstract In this paper we first demonstrate explicitly that the new models of integrable nearest-neighbour Hamiltonians recently introduced in PRL 125 (2020) 031604 [36] satisfy the so-called free fermion condition. This both implies that all these models are amenable to reformulations as free fermion theories, and establishes the universality of this condition. We explicitly recast the transfer matrix in free fermion form for arbitrary number of sites in the 6-vertex sector, and on two sites in the 8-vertex sector, using a Bogoliubov transformation. We then put this observation to use in lower-dimensional instances of AdS/CFT integrable R-matrices, specifically pure Ramond-Ramond massless and massive AdS3, mixed-flux relativistic AdS3 and massless AdS2. We also attack the class of models akin to AdS5 with our free fermion machinery. In all cases we use the free fermion realisation to greatly simplify and reinterpret a wealth of known results, and to provide a very suggestive reformulation of the spectral problem in all these situations.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Charles B. Thorn

Abstract Although the energy spectrum of the Heisenberg spin chain on a circle defined by$$ H=\frac{1}{4}\sum \limits_{k=1}^M\left({\sigma}_k^x{\sigma}_{k+1}^x+{\sigma}_k^y{\sigma}_{k+1}^y+\Delta {\sigma}_k^z{\sigma}_{k+1}^z\right) $$ H = 1 4 ∑ k = 1 M σ k x σ k + 1 x + σ k y σ k + 1 y + Δ σ k z σ k + 1 z is well known for any fixed M, the boundary conditions vary according to whether M ∈ 4ℕ + r, where r = −1, 0, 1, 2, and also according to the parity of the number of overturned spins in the state, In string theory all these cases must be allowed because interactions involve a string with M spins breaking into strings with M1< M and M − M1 spins (or vice versa). We organize the energy spectrum and degeneracies of H in the case ∆ = 0 where the system is equivalent to a system of free fermions. In spite of the multiplicity of special cases, in the limit M → ∞ the spectrum is that of a free compactified worldsheet field. Such a field can be interpreted as a compact transverse string coordinate x(σ) ≡ x(σ) + R0. We construct the bosonization formulas explicitly in all separate cases, and for each sector give the Virasoro conformal generators in both fermionic and bosonic formulations. Furthermore from calculations in the literature for selected classes of excited states, there is strong evidence that the only change for ∆ ≠ 0 is a change in the compactification radius R0→ R∆. As ∆ → −1 this radius goes to infinity, giving a concrete example of noncompact space emerging from a discrete dynamical system. Finally we apply our work to construct the three string vertex implied by a string whose bosonic coordinates emerge from this mechanism.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Johanna Erdmenger ◽  
Pascal Fries ◽  
Ignacio A. Reyes ◽  
Christian P. Simon

Abstract Modular flow is a symmetry of the algebra of observables associated to space-time regions. Being closely related to entanglement, it has played a key role in recent connections between information theory, QFT and gravity. However, little is known about its action beyond highly symmetric cases. The key idea of this work is to introduce a new formula for modular flows for free chiral fermions in 1 + 1 dimensions, working directly from the resolvent, a standard technique in complex analysis. We present novel results — not fixed by conformal symmetry — for disjoint regions on the plane, cylinder and torus. Depending on temperature and boundary conditions, these display different behaviour ranging from purely local to non-local in relation to the mixing of operators at spacelike separation. We find the modular two-point function, whose analytic structure is in precise agreement with the KMS condition that governs modular evolution. Our ready-to-use formulae may provide new ingredients to explore the connection between spacetime and entanglement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salvatore Lorenzo ◽  
Stefano Longhi ◽  
Albert Cabot ◽  
Roberta Zambrini ◽  
Gian Luca Giorgi

AbstractIt has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-exponential staircase decay. This effect, that we refer to as intermittent decoherence blockade, arises from periodic destructive interference between light emitted in the present and light emitted in the past, i.e., from delayed coherent quantum feedback.


Sign in / Sign up

Export Citation Format

Share Document