scholarly journals Soft-collinear mode for jet cross sections in soft collinear effective theory

2016 ◽  
Vol 93 (1) ◽  
Author(s):  
Yang-Ting Chien ◽  
Andrew Hornig ◽  
Christopher Lee
Author(s):  
Thomas Becher

The lectures that appear within this chapter provide an introduction to soft-collinear effective theory (SCET). It begins by discussing resummation for soft-photon effects in QED, including soft photons in electron–electron scattering and the expansion of loop integrals and the method of regions event-shape variables. It then covers SCET specifically, including the method of regions for the Sudakov form factor, effective Lagrangians, the vector current in SCET, and resummation by renormalization group (RG) evolution. It covers applications of SCET in jet physics, describes the characteristic feature in jet processes of Sudakov logarithms, and discusses factorization for the event-shape variable thrust and factorization and resummation for jet cross sections.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Alejandro Bris ◽  
Vicent Mateu ◽  
Moritz Preisser

Abstract In a recent paper we have shown how to optimally compute the differential and cumulative cross sections for massive event-shapes at $$ \mathcal{O}\left({\alpha}_s\right) $$ O α s in full QCD. In the present article we complete our study by obtaining resummed expressions for non-recoil-sensitive observables to N2LL + $$ \mathcal{O}\left({\alpha}_s\right) $$ O α s precision. Our results can be used for thrust, heavy jet mass and C-parameter distributions in any massive scheme, and are easily generalized to angularities and other event shapes. We show that the so-called E- and P-schemes coincide in the collinear limit, and compute the missing pieces to achieve this level of accuracy: the P-scheme massive jet function in Soft-Collinear Effective Theory (SCET) and boosted Heavy Quark Effective Theory (bHQET). The resummed expression is subsequently matched into fixed-order QCD to extend its validity towards the tail and far- tail of the distribution. The computation of the jet function cannot be cast as the dis- continuity of a forward-scattering matrix element, and involves phase space integrals in d = 4 − 2ε dimensions. We show how to analytically solve the renormalization group equation for the P-scheme SCET jet function, which is significantly more complicated than its 2-jettiness counterpart, and derive rapidly-convergent expansions in various kinematic regimes. Finally, we perform a numerical study to pin down when mass effects become more relevant.


2015 ◽  
Vol 37 ◽  
pp. 1560045 ◽  
Author(s):  
Christopher Lee

Soft Collinear Effective Theory (SCET) is an effective field theory of Quantum Chromodynamics (QCD) for processes where there are energetic, nearly lightlike degrees of freedom interacting with one another via soft radiation. SCET has found many applications in high-energy and nuclear physics, especially in recent years the physics of hadronic jets in e+e-, lepton-hadron, hadron-hadron, and heavy-ion collisions. SCET can be used to factorize multi-scale cross sections in these processes into single-scale hard, collinear, and soft functions, and to evolve these through the renormalization group to resum large logarithms of ratios of the scales that appear in the QCD perturbative expansion, as well as to study properties of nonperturbative effects. We overview the elementary concepts of SCET and describe how they can be applied in high-energy and nuclear physics.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Melissa van Beekveld ◽  
Eric Laenen ◽  
Jort Sinninghe Damsté ◽  
Leonardo Vernazza

Abstract We study next-to-leading-power (NLP) threshold corrections in colour-singlet production processes, with particular emphasis on Drell-Yan (DY) and single-Higgs production. We assess the quality of the partonic and hadronic threshold expansions for each process up to NNLO. We determine numerically the NLP leading-logarithmic (LL) resummed contribution in addition to the leading-power next-to-next-to-leading logarithmic (LP NNLL) resummed DY and Higgs cross sections, matched to NNLO. We find that the inclusion of NLP logarithms is numerically more relevant than increasing the precision to N3LL at LP for these processes. We also perform an analytical and numerical comparison of LP NNLL + NLP LL resummation in soft-collinear effective theory and direct QCD, where we achieve excellent analytical and numerical agreement once the NLP LL terms are included in both formalisms. Our results underline the phenomenological importance of understanding the NLP structure of QCD cross sections.


2005 ◽  
Vol 20 (14) ◽  
pp. 3007-3020
Author(s):  
SEAN FLEMING

In this talk I review recent experimental and theoretical results in QCD. Since the topic is too vast to cover within given time constraints I choose to highlight some of the subjects that I find particularly exciting. On the experimental side I focus on measurements made at the Tevatron. Specifically jet production rates, and the cross section for B meson production. In addition I discuss an interesting measurement made by the Belle collaboration of double exclusive charmonium production. On the theory side I quickly review recent advances in computing hadronic cross sections at subleading order in perturbation theory. I then move on to soft-collinear effective theory. After a lightning review of the formalism I discuss recently published results on color-suppressed B → D decays.


Effective field theory (EFT) is a general method for describing quantum systems with multiple-length scales in a tractable fashion. It allows us to perform precise calculations in established models (such as the standard models of particle physics and cosmology), as well as to concisely parametrize possible effects from physics beyond the standard models. EFTs have become key tools in the theoretical analysis of particle physics experiments and cosmological observations, despite being absent from many textbooks. This volume aims to provide a comprehensive introduction to many of the EFTs in use today, and covers topics that include large-scale structure, WIMPs, dark matter, heavy quark effective theory, flavour physics, soft-collinear effective theory, and more.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Junegone Chay ◽  
Chul Kim

Abstract In soft-collinear effective theory, we analyze the structure of rapidity divergence due to the collinear and soft modes residing in disparate phase spaces. The idea of an effective theory is applied to a system of collinear modes with large rapidity and soft modes with small rapidity. The large-rapidity (collinear) modes are integrated out to obtain the effective theory for the small-rapidity (soft) modes. The full SCET with the collinear and soft modes should be matched onto the soft theory at the rapidity boundary, and the matching procedure becomes exactly the zero-bin subtraction. The large-rapidity region is out of reach for the soft mode, which results in the rapidity divergence. The rapidity divergence in the collinear sector comes from the zero-bin subtraction, which ensures the cancellation of the rapidity divergences from the soft and collinear sectors. In order to treat the rapidity divergence, we construct the rapidity regulators consistently for all the modes. They are generalized by assigning independent rapidity scales for different collinear directions. The soft regulator incorporates the correct directional dependence when the innate collinear directions are not back-to-back, which is discussed in the N-jet operator. As an application, we consider the Sudakov form factor for the back-to-back collinear current and the soft-collinear current, where the soft rapidity regulator for a soft quark is developed. We extend the analysis to the boosted heavy quark sector and exploit the delicacy with the presence of the heavy quark mass. We present the resummed results of large logarithms in the form factors for various currents with the light and the heavy quarks, employing the renormalization group evolution on the renormalization and the rapidity scales.


Sign in / Sign up

Export Citation Format

Share Document