scholarly journals Compton scatteringSmatrix and cross section in strong magnetic field

2016 ◽  
Vol 93 (10) ◽  
Author(s):  
Alexander A. Mushtukov ◽  
Dmitrij I. Nagirner ◽  
Juri Poutanen
1991 ◽  
Vol 9 (2) ◽  
pp. 325-325
Author(s):  
Chih-Kang Chou ◽  
Hui-Hwa Chen

Extended abstractThomson scattering in pulsar magnetospheres has previously been studied by several authors. The most distinguishing feature is the fact that the super-strong magnetic field (B ~ 1012 G) greatly affects the Thomson scattering process, resulting in resonances in the scattering cross-section (Canuto et al. 1971; Herold 1979; Chou 1986; Daugherty and Harding 1986). The important consequences of these cyclotron resonances are the increase in the photon mean free path in the scattering regions, and strongly affecting the angular distribution, and polarisation properties of the scattered photons (Chou 1986; Chou et al. 1989).


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 45
Author(s):  
Elena V. Orlenko ◽  
Alexandr V. Evstafev ◽  
Fedor E. Orlenko

The processes of scattering slow positrons with the possible formation of positronium play an important role in the diagnosis of both composite materials, including semiconductor materials, and for the analysis of images obtained by positron tomography of living tissues. In this paper, we consider the processes of scattering positrons with the capture of an electron and the formation of positronium. When calculating the cross-section for the capture reaction, exchange effects caused by the rearrangement of electrons between colliding particles are taken into account. Comparison of the results of calculating the cross-section with a similar problem of electron capture by a proton showed that the mass effect is important in such a collision process. The loss of an electron by a lithium atom is more effective when it collides with a positron than with a proton or alpha particles. The dynamic equilibrium of the formation of positronium in the presence of a strong magnetic field is considered. It is shown that a strong magnetic field during tomography investigation shifts the dynamic equilibrium to the positronium concentration followed by positron annihilation with radiation of three gamma-quants.


2013 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Dang Van Soa ◽  
Tran Dinh Tham

Photon - axion conversions in staticelectromagnetic fields of the size \(a\times b \times c\) areconsidered in detail by the Feynman diagram methods. Thedifferential cross sections are presented and the numericalevaluations of the total cross section are given. Our result showsthat the conversion cross-sections in the electric field are quitesmall, while in the strong magnetic field, the cross-sections are much enhanced, which can be measurable in current experiments.


Sign in / Sign up

Export Citation Format

Share Document