Percolation analysis of the atmospheric structure

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Yu Sun ◽  
Jun Meng ◽  
Qing Yao ◽  
Abbas Ali Saberi ◽  
Xiaosong Chen ◽  
...  
2000 ◽  
Vol 52 (11) ◽  
pp. 941-945 ◽  
Author(s):  
A. Flores ◽  
L. P. Gradinarsky ◽  
P. Elósegui ◽  
G. Elgered ◽  
J. L. Davis ◽  
...  

2016 ◽  
Vol 60 (8) ◽  
pp. 768-775 ◽  
Author(s):  
A. N. Babin ◽  
E. A. Baranovskii ◽  
A. N. Koval’

2008 ◽  
Vol 56 (5) ◽  
pp. 573-585 ◽  
Author(s):  
Alessio Aboudan ◽  
Giacomo Colombatti ◽  
Francesca Ferri ◽  
Francesco Angrilli

2021 ◽  
Author(s):  
Lorenzo Pino ◽  
Matteo Brogi ◽  
Jean-Michel Désert ◽  
Emily Rauscher

<p>Ultra-hot Jupiters (UHJs; T<sub>eq</sub> ≥ 2500 K) are the hottest gaseous giants known. They emerged as ideal laboratories to test theories of atmospheric structure and its link to planet formation. Indeed, because of their high temperatures, (1) they likely host atmospheres in chemical equilibrium and (2) clouds do not form in their day-side. Their continuum, which can be measured with space-facilities, can be mostly attributed to H- opacity, an indicator of metallicity. From the ground, the high spectral resolution emission spectra of UHJs contains thousands of lines of refractory (Fe, Ti, TiO, …) and volatile species (OH, CO, …), whose combined atmospheric abundances could track planet formation history in a unique way. In this talk, we take a deeper look to the optical emission spectrum of KELT-9b covering planetary phases 0.25 - 0.75 (i.e. between secondary eclipse and quadrature), and search for the effect of atmospheric dynamics and three-dimensionality of the planet atmosphere on the resolved line profiles, in the context of a consolidated statistical framework. We discuss the suitability of the traditionally adopted 1D models to interprete phase-resolved observations of ultra-hot Jupiters, and the potential of this kind of observations to probe their 3D atmospheric structure and dynamics. Ultimately, understanding which factors affect the line-shape in UHJs will also lead to more accurate and more precise abundance measurements, opening a new window on exoplanet formation and evolution.</p>


2005 ◽  
Vol 62 (10) ◽  
pp. 3758-3774 ◽  
Author(s):  
Daniel J. Kirshbaum ◽  
Dale R. Durran

Abstract The three-dimensional structure of shallow orographic convection is investigated through simulations performed with a cloud-resolving numerical model. In moist flows that overcome a given topographic barrier to form statically unstable cap clouds, the organization of the convection depends on both the atmospheric structure and the mechanism by which the convection is initiated. Convection initiated by background thermal fluctuations embedded in the flow over a smooth mountain (without any small-scale topographic features) tends to be cellular and disorganized except that shear-parallel bands may form in flows with strong unidirectional vertical shear. The development of well-organized bands is favored when there is weak static instability inside the cloud and when the dry air surrounding the cloud is strongly stable. These bands move with the flow and distribute their cumulative precipitation evenly over the mountain upslope. Similar shear-parallel bands also develop in flows where convection is initiated by small-scale topographic noise superimposed onto the main mountain profile, but in this case stronger circulations are also triggered that create stationary rainbands parallel to the low-level flow. This second dominant mode, which is less sensitive to the atmospheric structure and the strength of forcing, is triggered by lee waves that form over small-scale topographic bumps near the upstream edge of the main orographic cloud. Due to their stationarity, these flow-parallel bands can produce locally heavy precipitation amounts.


2000 ◽  
Vol 44 ◽  
pp. 79-84
Author(s):  
Ryo MORIWAKI ◽  
Hiroaki ISHII ◽  
Manabu KANDA

2017 ◽  
Vol 34 (5) ◽  
pp. 1183-1191 ◽  
Author(s):  
Ross T. Palomaki ◽  
Nathan T. Rose ◽  
Michael van den Bossche ◽  
Thomas J. Sherman ◽  
Stephan F. J. De Wekker

AbstractUnmanned aerial vehicles are increasingly used to study atmospheric structure and dynamics. While much emphasis has been on the development of fixed-wing unmanned aircraft for atmospheric investigations, the use of multirotor aircraft is relatively unexplored, especially for capturing atmospheric winds. The purpose of this article is to demonstrate the efficacy of estimating wind speed and direction with 1) a direct approach using a sonic anemometer mounted on top of a hexacopter and 2) an indirect approach using attitude data from a quadcopter. The data are collected by the multirotor aircraft hovering 10 m above ground adjacent to one or more sonic anemometers. Wind speed and direction show good agreement with sonic anemometer measurements in the initial experiments. Typical errors in wind speed and direction are smaller than 0.5 and 30°, respectively. Multirotor aircraft provide a promising alternative to traditional platforms for vertical profiling in the atmospheric boundary layer, especially in conditions where a tethered balloon system is typically deployed.


Sign in / Sign up

Export Citation Format

Share Document