scholarly journals Creep motion of a solidification front in a two-dimensional binary alloy

1999 ◽  
Vol 59 (1) ◽  
pp. 512-527
Author(s):  
X. Feng ◽  
E. A. Brener ◽  
D. E. Temkin ◽  
Y. Saito ◽  
H. Müller-Krumbhaar
1999 ◽  
Vol 395 ◽  
pp. 253-270 ◽  
Author(s):  
Y.-J. CHEN ◽  
S. H. DAVIS

A steady, two-dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behaviour of the moving front is described by a slow, spatial–temporal dynamics obtained through a multiple-scale analysis. The resulting system has a parametric-excitation structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection in general stabilizes two-dimensional disturbances, but destabilizes three-dimensional disturbances. When the flow is weak, the morphological instability is incommensurate with the flow wavelength, but as the flow gets stronger, the instability becomes quantized and forced to fit into the flow box. At large flow strength the instability is localized, confined in narrow envelopes. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundaries and asymptotics are obtained by a WKB analysis. The weakly nonlinear interaction is delivered through the Lyapunov–Schmidt method.


2016 ◽  
Vol 442 ◽  
pp. 14-24 ◽  
Author(s):  
Tomohiro Takaki ◽  
Munekazu Ohno ◽  
Yasushi Shibuta ◽  
Shinji Sakane ◽  
Takashi Shimokawabe ◽  
...  

1997 ◽  
Vol 56 (9) ◽  
pp. 5261-5270 ◽  
Author(s):  
Marcel Porta ◽  
Carlos Frontera ◽  
Eduard Vives ◽  
Teresa Castán

2006 ◽  
Vol 508 ◽  
pp. 163-168 ◽  
Author(s):  
Xiao Dong Wang ◽  
A. Ciobanas ◽  
Florin Baltaretu ◽  
Anne Marie Bianchi ◽  
Yves Fautrelle

A numerical model aimed at simulating the segregations during the columnar solidification of a binary alloy is used to investigate the effects of a forced convection. Our objective is to study how the segregation characteristics in the mushy zone are influenced by laminar flows driven both by buoyancy and by AC fields of moderate intensity. Various types of magnetic fields have been tested, namely travelling, rotating magnetic field and slowly modulated electromagnetic forces. The calculations have been achieved on two types of alloys, namely tin-lead and aluminiumsilicon. It is shown that the flow configuration changes the segregation pattern. The change comes from the coupling between the liquid flow and the top of the mushy zone via the pressure distribution along the solidification front. The pressure difference along the front drives a mush flow, which transports the solute in the mushy region. Another interesting type of travelling magnetic field has been tested. It consists of a slowly modulated travelling magnetic field. It is shown that in a certain range of values of the modulation period, the channels are almost suppressed. The normal macrosegregation remains, but the averaged segregation in the mushy zone is weaker than in the natural convection case. The optimal period depends on the electromagnetic force strength as well as the cooling rate. The latter phenomenon cannot occur in the case of rotating magnetic fields, since in that configuration the sign of the pressure gradient along the solidification front remains unchanged. Recent solidification experiments with electromagnetic stirring confirm the predicted macrosegregation patterns.


Sign in / Sign up

Export Citation Format

Share Document