Numerical studies of the transport behavior of a passive solute in a two-dimensional incompressible random flow field

2003 ◽  
Vol 67 (4) ◽  
Author(s):  
M. Dentz ◽  
H. Kinzelbach ◽  
S. Attinger ◽  
W. Kinzelbach
1999 ◽  
Vol 39 (2) ◽  
pp. 43-52 ◽  
Author(s):  
R. Kowalski ◽  
J. Reuber ◽  
Jürgen Köngeter

Combined Sewage Detention Tanks (CSDT) are components of combined sewage systems commonly used in Germany. A lack of knowledge of the processes occurring within these structures causes the engineer to apply conceptual approaches in the simulation of pollutant transport. The investigations presented were implemented in an integrated systematic way. Extensive analytical, experimental and numerical studies of steady and transient phenomena taking place in CSDTs were carried out simulating different levels of hydraulic load. The study of the flow field and the simulation of sedimentation and erosion under realistic conditions resulted in proposals for modification and optimisation of the function of CSDTs. A simple way of predicting the cleaning efficiency is presented.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


2015 ◽  
Vol 23 (3) ◽  
pp. 755-763 ◽  
Author(s):  
Xueye Chen ◽  
Zhen Zhang ◽  
Dengli Yi ◽  
Zengliang Hu

2015 ◽  
Vol 15 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Matthias Ratajczak ◽  
Thomas Wondrak ◽  
Klaus Timmel ◽  
Frank Stefani ◽  
Sven Eckert

AbstractIn continuous casting DC magnetic fields perpendicular to the wide faces of the mold are used to control the flow in the mold. Especially in this case, even a rough knowledge of the flow structure in the mold would be highly desirable. The contactless inductive flow tomography (CIFT) allows to reconstruct the dominating two-dimensional flow structure in a slab casting mold by applying one external magnetic field and by measuring the flow-induced magnetic fields outside the mold. For a physical model of a mold with a cross section of 140 mm×35 mm we present preliminary measurements of the flow field in the mold in the presence of a magnetic brake. In addition, we show first reconstructions of the flow field in a mold with the cross section of 400 mm×100 mm demonstrating the upward scalability of CIFT.


2000 ◽  
Vol 62 (10) ◽  
pp. 6754-6760 ◽  
Author(s):  
Hong Zhu ◽  
XiaoJun Xu ◽  
Li Pi ◽  
YuHeng Zhang

1973 ◽  
Vol 187 (1) ◽  
pp. 733-743
Author(s):  
R. S. Benson ◽  
V. A. Eustace

The performance and flow field characteristics for two-dimensional ejector systems are determined theoretically for the condition when operation is independent of ambient pressure. The method considers the detailed inviscid interaction between the primary and secondary streams within the mixing tube and an estimate is made of the secondary flow entrained by the two-stream viscous mixing region. The validity of the theory is tested by comparing the performance characteristics of an experimental ejector facility with theoretical predictions and by comparing the theoretical flow field, in terms of constant density contours, with infinite fringe interferograms.


Sign in / Sign up

Export Citation Format

Share Document