scholarly journals Poisson bracket approach to the dynamics of nematic liquid crystals: The role of spin angular momentum

2005 ◽  
Vol 72 (5) ◽  
Author(s):  
H. Stark ◽  
T. C. Lubensky
2012 ◽  
Vol 21 (03) ◽  
pp. 1250033 ◽  
Author(s):  
GAETANO ASSANTO ◽  
NOEL F. SMYTH ◽  
WENJUN XIA

We use modulation theory to analyze the interaction of optical solitons and vortices with a dielectric interface between two regions of nematic liquid crystals. In the analysis we consider the role of nonlocality, anisotropy and nonlinear reorientation and compare modulation theory results with numerical results. Upon interacting with the interface, nematicons undergo transverse distortion but remain stable and eventually return to a steady state, whereas vortices experience an enhanced instability and can break up into bright beams or solitary waves.


2007 ◽  
Author(s):  
G. Strangi ◽  
S. Ferjani ◽  
V. Barna ◽  
A. De Luca ◽  
C. Versace ◽  
...  

2019 ◽  
Vol 116 (39) ◽  
pp. 19258-19263
Author(s):  
Zhanghui Chen ◽  
Jun-Wei Luo ◽  
Lin-Wang Wang

Ultrafast control of magnetic order by light provides a promising realization for spintronic devices beyond Moore’s Law and has stimulated intense research interest in recent years. Yet, despite 2 decades of debates, the key question of how the spin angular momentum flows on the femtosecond timescale remains open. The lack of direct first-principle methods and pictures for such process exacerbates the issue. Here, we unravel the laser-induced demagnetization mechanism of ferromagnetic semiconductor GaMnAs, using an efficient time-dependent density functional theory approach that enables the direct real-time snapshot of the demagnetization process. Our results show a clear spin-transfer trajectory from the localized Mn-d electrons to itinerant carriers within 20 fs, illustrating the dominant role of sp−d interaction. We find that the total spin of localized electrons and itinerant carriers is not conserved in the presence of spin-orbit coupling (SOC). Immediately after laser excitation, a growing percentage of spin-angular momentum is quickly transferred to the electron orbital via SOC in about 1 ps, then slowly to the lattice via electron–phonon coupling in a few picoseconds, responsible for the 2-stage process observed experimentally. The spin-relaxation time via SOC is about 300 fs for itinerant carriers and about 700 fs for Mn-d electrons. These results provide a quantum-mechanical microscopic picture for the long-standing questions regarding the channels and timescales of spin transfer, as well as the roles of different interactions underlying the GaMnAs demagnetization process.


Sign in / Sign up

Export Citation Format

Share Document