Resonant acceleration of charged particles in the presence of random fluctuations

2011 ◽  
Vol 84 (4) ◽  
Author(s):  
Anton Artemyev ◽  
Dmitri Vainchtein ◽  
Anatoly Neishtadt ◽  
Lev Zelenyi
2008 ◽  
Vol 26 (7) ◽  
pp. 1993-1997 ◽  
Author(s):  
J. Chen

Abstract. New evidence reveals that the charged particles can be energized locally in the magnetospheric cusp. The power spectral density of the cusp magnetic fluctuations shows increases by up to four orders of magnitude in comparison to an adjacent region. Large fluctuations of the cusp electric fields have been observed with an amplitude of up to 350 mV/m. The measured left-hand polarization of the cusp electric field at ion gyro-frequencies indicates that the cyclotron resonant acceleration mechanism is working in this region. The cyclotron resonant acceleration can energize ions from keV to MeV in seconds.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
F. Russman ◽  
I. Almansa ◽  
E. Peter ◽  
S. Marini ◽  
F. B. Rizzato

In the present analysis, we study effects of the radiation reaction (RR) on the dynamics of charged particles submitted to the action of localized longitudinal high-frequency carriers travelling at the speed of light. As the wave's crests and troughs keep overtaking particles, dissipative RR forces tend to drag particles alongside the wave in an effort to reduce the relative wave–particle speed. Particles of course never reach the phase velocity of the wave, but are instead driven to an ever-growing velocity, towards the speed of light, while in the wave localization region. We developed a modified average Hamiltonian formalism capable of describing the intricacies of the corresponding dynamics. The modified formalism agrees with simulations and is of particular usefulness in the study of optimum values for the localization length and maximum wave amplitude.


1984 ◽  
Vol 75 ◽  
pp. 203-209
Author(s):  
Joseph A. Burns

ABSTRACTLying in Jupiter's equatorial plane is a diaphanous ring having little substructure within its three components (main band, faint disk, and halo). Micron-sized grains account for much of the visible ring, but particles of centimeter sizes and larger must also be present to absorb charged particles. Since dynamical evolution times and survival life times are quite short (≲102-3yr) for small grains, the Jovian ring is being continually replenished; probably most of the visible ring is generated by micrometeoroids colliding into unseen parent bodies that reside in the main band.


Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


1967 ◽  
Vol 93 (12) ◽  
pp. 617-631 ◽  
Author(s):  
Ya.B. Fainberg
Keyword(s):  

2003 ◽  
Vol 8 (5-6) ◽  
pp. 60-64
Author(s):  
A.I. Arkhangelsky ◽  
◽  
Yu.D. Kotov ◽  
P.Yu. Chistiakov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document