scholarly journals Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings

2013 ◽  
Vol 87 (6) ◽  
Author(s):  
Juliano A. de Oliveira ◽  
Carl P. Dettmann ◽  
Diogo R. da Costa ◽  
Edson D. Leonel
1978 ◽  
Vol 1 (16) ◽  
pp. 87 ◽  
Author(s):  
P. Nielsen ◽  
I.A. Svensen ◽  
C. Staub

A theoretical model is developed for the movement of loose sediments in oscillatory flow with or without a net current. In the present formulation the model is two-dimensional, but may readily be extended to three dimensions. It is assumed that all movement of sediments occurs in suspension, and exact analytical solutions are given for the time variation of the concentration profile, the instantaneous sediment flux and the net flux of sediment over a wave period. The model requires as empirical input a diffusion coefficient e and pick-up function p(t), for which experimental data are presented. Two examples are discussed in detail, illustrating important aspects of the onshore-offshore sediment motion.


Horvath, Petrov, Scott and Showalter (1993) have shown that isothermal reaction-diffusion fronts with cubic autocalysis are linearly unstable to two-dimensional disturbances if the ratio, δ , of the diffusion coefficient of the reactant to that of the autocatalyst, is sufficiently large. However, they were only able to obtain an analytic expression for the growth rate by assuming an infinitely thin reaction zone, which is a poor approximation for cubic autocatalysis. We have carried out a linear stability analysis of such fronts with a finite reaction rate, and find that the critical δ for instability is unchanged, but the range of unstable wavenumbers is larger and increases rather than decreases with δ .


1980 ◽  
Vol 17 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Frank J. S. Wang

A spatial epidemic process where the individuals are located at positions in the Euclidean space R2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ, move in R2 according to a Brownian motion with a diffusion coefficient σ2. The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area dy by an infective in dx is assumed to be a function h(x – y |) of the distance | x – y | between x and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let be the number of infective individuals in the set D at time t and . The almost everywhere convergence of the random variables to a limit random variable W(D) is established.


Sign in / Sign up

Export Citation Format

Share Document