State-resolved transport collision integrals for the O+O2 system

2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Sharanya Subramaniam ◽  
Richard L. Jaffe ◽  
Kelly A. Stephani
Keyword(s):  
Author(s):  
Annarita Laricchiuta ◽  
Mario Capitelli ◽  
Roberto Celiberto ◽  
Claudine Gorse ◽  
Domenico Bruno ◽  
...  

2021 ◽  
Vol 2056 (1) ◽  
pp. 012007
Author(s):  
S S Sitnikov ◽  
F G Tcheremissine ◽  
T A Sazykina

Abstract Two-dimensional binary gas mixture outflow from a vessel into vacuum through a thin slit is studied on the basis of direct solution of the Boltzmann kinetic equation. For evaluation of collision integrals in the Boltzmann equation a conservative projection method is used. Numerical simulation of a two-dimensional argon-neon gas mixture outflow from a vessel into vacuum was performed. Graphs of mixture components flow rate dependence on time during the flow formation, as well as fields of molecular density and temperature for steady-state regime, were obtained.


1974 ◽  
Vol 29 (12) ◽  
pp. 1705-1716 ◽  
Author(s):  
W. E. Köhler

Collision integrals of the linearized Waldmann-Snider collision operator for pure gases are defined. General properties due to invariances of the molecular interaction are discussed. Effective cross sections are introduced and expressed in terms of convenient bracket symbols. The positive definiteness of the relaxation coefficients is proved. The approximation of small nonsphericity for the scattering amplitude is explained and consequences for the collision integrals are investigated. Molecular cross sections describing the orientation and reorientation of the molecular rotational angular momentum are defined. Expressions for effective cross sections relevant for the various nonequilibrium alignment phenomena are presented.


1971 ◽  
Vol 26 (11) ◽  
pp. 1926-1928 ◽  
Author(s):  
W. E. Köhler

The magnetic Senftleben-Beenakker effect of the viscosity is mainly determined by two collision integrals of the linearized quantum mechanical Waldmann-Snider collision term, viz. by the relaxation coefficient of the tensor polarization of the molecular rotational angular momenta and by the coefficient which couples the friction pressure tensor and the tensor polarization. Starting from a simple nonspherical potential for HD, the scattering amplitude is evaluated analytically in first order distorted wave Born approximation and the two collision integrals are calculated for room temperature. A fairly good agreement with experimental values is found.


1984 ◽  
Vol 34 (1-2) ◽  
pp. 219-222
Author(s):  
György Hegyi ◽  
Liviu Barbu ◽  
L. Jakab
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document