reduced viscosity
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 39)

H-INDEX

19
(FIVE YEARS 4)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2189
Author(s):  
Ana Maria Sivriu ◽  
Olga Valerica Sapunaru ◽  
Ancaelena Eliza Sterpu ◽  
Doinita-Roxana Cioroiu Tirpan ◽  
Timur Vasile Chis ◽  
...  

The aim of this study was to improve the quality of a vegetable oil, having in view its use as a quenchant for metallic parts in aircrafts. A process of pyrolysis under vacuum was applied to obtain a bio-oil with reduced viscosity and good quenching properties. Preliminarily, the rapeseed oil was fast pyrolyzed at temperature in the range of 300–375 °C and absolute pressure of 1 μbar. Some results such as viscosity and yields of bio-oil were obtained with a narrowing of the temperature range between 300–320 °C, for further processing. Quenching tests with bio-oils on stainless steel 25CD4 showed cooling curves closer to those of the standard mineral oil (Castrol IloquenchTM 1), by comparing them with unprocessed vegetable oil. The hardness of the steel after treatment rose from 29–30 HRC to 43–45 HRC, in accordance with requirements (35–45 HRC). Therefore, the conclusion is that bio-oils obtained by pyrolysis under vacuum are good quenchant proceeds from this study.


2021 ◽  
Author(s):  
Robert Mahen

Centrioles are non-membrane bound organelles that participate in fundamental cellular processes through their ability to form physical contacts with other structures. During interphase, two mature centrioles can associate to form a single centrosome - a phenomenon known as centrosome cohesion. Centrosome cohesion is important for processes such as cell migration, and yet how it is maintained is unclear. Current models indicate that pericentriolar fibres termed rootlets, also known as the centrosome linker, entangle to maintain centriole proximity. Here, I uncover a new centriole-centriole contact site and mechanism of centrosome cohesion, based on coalescence of the proximal centriole component cNap1. Using live-cell imaging of endogenously tagged cNap1, I show that proximal centrioles form dynamic contacts in response to physical force from the cytoskeleton. Expansion microscopy reveals that cNap1 bridges between these contact sites, physically linking proximal centrioles on the nanoscale. When ectopically tethered to organelles such as lysosomes, cNap1 forms viscous and cohesive condensates that promote organelle spatial proximity. Conversely, cNap1 mutants with reduced viscosity are unable to maintain centrosome cohesion. These results define a previously unrecognised mechanism of centrosome cohesion by cNap1 assemblies at the proximal centriole and illustrate how a non-membrane bound organelle forms dynamic organelle contact sites.


2021 ◽  
Vol 5 (9) ◽  
pp. 250
Author(s):  
Natalia V. Bornosuz ◽  
Roman F. Korotkov ◽  
Vyacheslav V. Shutov ◽  
Igor S. Sirotin ◽  
Irina Yu. Gorbunova

The influence of epoxy active diluents, 1,4-butanediol diglycidyl ether (BD) and furfuryl glycidyl ether (FUR), in the mixtures with benzoxazine monomer based on bisphenol A, formaldehyde and m-toluidine (BA-mt), on the properties of a matrix was disclosed in this work. Resins were modified to achieve good tackiness at room temperature and reduced viscosity. The influence of mono- and difunctional modifiers on the process of curing was studied by way of differential scanning calorimetry and oscillatory rheology. The addition of BD and FUR shifted the curing peak to higher temperatures and significantly reduced viscosity. Preferable tackiness at ambient temperature was achieved with 10 phr of epoxy components in mixtures. However, cured blends with difunctional epoxy BD had an advantage over monofunctional FUR in enhanced tensile strength with remaining glass transition temperature at the level of neat benzoxazine (217 °C).


2021 ◽  
Vol 899 ◽  
pp. 532-539
Author(s):  
Aues A. Beev ◽  
Azamat A. Khashirov ◽  
Dzhul’etta A. Beeva ◽  
M.U. Shokumova ◽  
V.V. Khasanov

The paper investigates the dependence of the reduced viscosity and some properties of aromatic copolyethersulfone ketones on the chemical structure of diphenols and activated dihaloid compounds on the conditions of copolycondensation processes. It is shown that the course of copolycondensation processes and important performance characteristics of products are significantly influenced by the chemical structures of the starting monomers and the order of their introduction into the reaction.


2021 ◽  
Vol 11 (16) ◽  
pp. 7370
Author(s):  
Janine Tiu ◽  
Renan Belli ◽  
Ulrich Lohbauer

(1) Objectives: This work examined properties of dental monomer formulations of an aromatic dimethacylate (BisGMA), aliphatic urethane dimethacrylate (UDMA), and triethylene glycol dimethacrylate (TEGDMA). The monomers were combined in different ratio formulations and heat-polymerized containing the initiator benzoyl peroxide (BPO) specifically for the purpose of infiltration into polymer-infiltrated composite structures. (2) Methods: The monomers were combined in different weight ratios and underwent rheological analysis (viscosity and temperature dependence), degree of conversion, and mechanical properties (elastic modulus, hardness, fracture toughness). (3) Results: Rheological properties showed Newtonian behavior for monomers with a large dependence on temperature. The addition of BPO allowed for gelation in the range of 72.0–75.9 °C. Degree of conversion was found between 74% and 87% DC, unaffected by an increase of TEGDMA (up to 70 wt%). Elastic modulus, hardness, and fracture toughness were inversely proportional to an increase in TEGDMA. Elastic modulus and hardness were found slightly increased for UDMA versus BisGMA formulations, while fracture toughness ranged between 0.26 and 0.93 MPa·m0.5 for UDMA- and 0.18 and 0.68 MPa·m0.5 for BisGMA-based formulations. (4) Significance: Heat-polymerization allows for greater range of monomer formulations based on viscosity and degree of conversion when selecting for infiltrated composite structures. Therefore, selection should be based on mechanical properties. The measured data for fracture toughness combined with the reduced viscosity at higher UDMA:TEGDMA ratios favor such formulations over BisGMA:TEGDMA mixtures.


2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Ali Alarbah ◽  
Ezeddin Shirif ◽  
Na Jia ◽  
Hamdi Bumraiwha

Abstract Chemical-assisted enhanced oil recovery (EOR) has recently received a great deal of attention as a means of improving the efficiency of oil recovery processes. Producing heavy oil is technically difficult due to its high viscosity and high asphaltene content; therefore, novel recovery techniques are frequently tested and developed. This study contributes to general progress in this area by synthesizing an acidic Ni-Mo-based liquid catalyst (LC) and employing it to improve heavy oil recovery from sand-pack columns for the first time. To understand the mechanisms responsible for improved recovery, the effect of the LC on oil viscosity, density, interfacial tension (IFT), and saturates, aromatics, resin, and asphaltenes (SARA) were assessed. The results show that heavy oil treated with an acidic Ni-Mo-based LC has reduced viscosity and density and that the IFT of oil–water decreased by 7.69 mN/m, from 24.80 mN/m to 17.11 mN/m. These results are specific to the LC employed. The results also indicate that the presence of the LC partially upgrades the structure and group composition of the heavy oil, and sand-pack flooding results show that the LC increased the heavy oil recovery factor by 60.50% of the original oil in place (OOIP). Together, these findings demonstrate that acidic Ni-Mo-based LCs are an effective form of chemical-enhanced EOR and should be considered for wider testing and/or commercial use.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 783
Author(s):  
Omar Rodríguez-Uicab ◽  
Ian Guay ◽  
Jandro L. Abot ◽  
Francis Avilés

The effect of polymerization kinetics and resin viscosity on the electrical response of a single carbon nanotube yarn (CNTY) embedded in a vinyl ester resin (VER) during polymerization was investigated. To analyze the effect of the polymerization kinetics, the concentration of initiator (methyl ethyl ketone peroxide) was varied at three levels, 0.6, 0.9, and 1.2 wt.%. Styrene monomer was added to VER, to reduce the polymer viscosity and to determine its effect on the electrical response of the CNTY upon resin wetting and infiltration. Upon wetting and wicking of the CNTY by VER, a transient decrease in the CNTY electrical resistance (ca. −8%) was observed for all initiator concentrations. For longer times, this initial decrease in electrical resistance may become a monotonic decrease (up to ca. −17%) or change its trend, depending on the initiator concentration. A higher concentration of initiator showed faster and more negative electrical resistance changes, which correlate with faster gel times and higher build-up of residual stresses. An increase in styrene monomer concentration (reduced viscosity) resulted in an upward shift of the electrical resistance to less negative values. Several mechanisms, including wetting, wicking, infiltration, electronic transfer, and shrinkage, are attributed to the complex electrical response of the CNTY upon resin wetting and infiltration.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
J. Umer ◽  
N. J. Morris ◽  
R. Rahmani ◽  
H. Rahnejat ◽  
S. Howell-Smith ◽  
...  

Abstract To extend drain intervals and improve efficiency, new engine oils with increased dispersant concentration and reduced viscosity are required. Low viscosity engine oils can increase the prevalence of boundary friction at low temperature and increase its severity at higher temperatures. As a result, combinations of organic and inorganic friction modifiers (FM) will be used to reduce boundary friction across a range of temperatures, also preventing damage to vehicle catalysts. This paper presents an experimental case study of such a new generation of fully formulated engine lubricants with varying concentrations of polyisobutylene succinimide dispersant, organic, and inorganic FM. Representative conditions pertaining to those encountered at the top dead center reversal of the piston compression ring-cylinder liner contact are created, and the generated friction measured through use of a sliding-strip tribometry. Subsequently, X-ray photoelectron spectroscopy (XPS) is used to determine the composition of the formed surface tribofilms in order to explain the observed frictional characteristics. The key interactions and frictional behavior of the dispersant and friction modifiers are highlighted across a range of operating temperatures.


2021 ◽  
Vol 19 (1) ◽  
pp. 49-56
Author(s):  
Sanaa S. Najm

A polymer blends (PVA/PEG) have been prepared at various concentrations(6%, 8%, 10%, 12%, and 14%) g /ml by dissolving different weights from the powders{Pva and Peg}.The behavior of this mixture has been studied utilize some physical properties such as ultrasonic absorption coefficient, relaxation amplitude, specific acoustic Impedance, compression, bulk modulus, shear viscosity, and Reduced viscosity. The outcomes referenced that each of these characteristics increased with increasing concentration of polymeric solutions, "while compressibility decreased with increasing concentration solutions".


Author(s):  
Elizabeth Bodie ◽  
Aleksandra Virag ◽  
Robert J Pratt ◽  
Nicholas Leiva ◽  
Michael Ward ◽  
...  

Abstract Morphological mutants of Trichoderma reesei were isolated following chemical or insertional mutagenesis. The mutant strains were shown to have reduced viscosity under industrially-relevant fermentation conditions and to have maintained high specific productivity of secreted protein. This allowed higher biomass concentration to be maintained during the production phase and, consequently, increased volumetric productivity of secreted protein. The causative mutations were traced to four individual genes (designated sfb3, ssb7, seb1 and mpg1). We showed that two of the morphological mutations could be combined in a single strain to further reduce viscosity and enable a 100 per cent increase in volumetric productivity.


Sign in / Sign up

Export Citation Format

Share Document