scholarly journals Time-Domain Scars: Resolving the Spectral Form Factor in Phase Space

2009 ◽  
Vol 102 (15) ◽  
Author(s):  
Thomas Dittrich ◽  
Leonardo A. Pachón
Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 365-375 ◽  
Author(s):  
Qingkai Han ◽  
Xueyan Zhao ◽  
Xingxiu Li ◽  
Bangchun Wen

In this paper, we investigate the joint viscous friction effects on the motions of a two-bar linkage under controlling of OPCL. The dynamical model of the two-bar linkage with an OPCL controller is firstly set up with considering the two joints' viscous frictions. Thereafter, the motion bifurcations of the two-bar linkage along the values of joint viscous frictions are obtained using shooting method. Then, single-periodic, multiple-periodic, quasi-periodic and chaotic motions of link rotating angles are simulated with given different viscous friction values, and they are illustrated in time domain waveforms, phase space portraits, amplitude spectra and Poincare mapping graphs, respectively. Additionally, for the chaotic case, Lyapunov exponents and hypothesis possibilities of the two joint motions are also estimated.


2004 ◽  
Vol 37 (3) ◽  
pp. L31-L37 ◽  
Author(s):  
Stefan Heusler ◽  
Sebastian Müller ◽  
Petr Braun ◽  
Fritz Haake

1994 ◽  
Vol 95 (5) ◽  
pp. 2903-2903
Author(s):  
L. Carin ◽  
L. B. Felsen ◽  
T.‐T. Hsu ◽  
D. Kralj

10.12737/5892 ◽  
2014 ◽  
Vol 21 (3) ◽  
pp. 27-35
Author(s):  
Еськов ◽  
V. Eskov ◽  
Джумагалиева ◽  
L. Dzhumagalieva ◽  
Еськов ◽  
...  

The article presents three approaches (deterministic, stochastic and chaotic – self-organizing) for studying biomedical systems. The authors show that complex biosystems cann’t be described by deterministic and stochastics because of constant changing parameters xi of a state vector of such systems x=x(t). The fundamental distinguish of deterministic and stochastic systems from chaotic – self-organizing is continuous movement x(t) in phase space of states. The authors also present complex of objects which the authors have been studying for the last 30 years and which conform the type III systems. The particular features of the personalized medicine are presented, that denies possibility of identification of body state at one measurement (a point in a phase space). It is connected with the fact that there is a uniform distribution x(t) in time-domain xi which is revealed in continuous change of distribution functions f(x) for different discrete recording time-domain x(t) at all xi. The authors assert that behavior dynamics of neural networks is similar to work of neuroemulators that is terminated by certainty in quasi-attractor’s volumes.


2006 ◽  
Vol 74 (6) ◽  
Author(s):  
Piet W. Brouwer ◽  
Saar Rahav ◽  
Chushun Tian

2019 ◽  
Vol 100 (2) ◽  
Author(s):  
Adwait Gaikwad ◽  
Ritam Sinha

Sign in / Sign up

Export Citation Format

Share Document