spectral form
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 33)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
pp. 013103
Author(s):  
Ramanjit Sohal ◽  
Laimei Nie ◽  
Xiao-Qi Sun ◽  
Eduardo Fradkin

Abstract We investigate the thermalization of Sachdev–Ye–Kitaev (SYK) models coupled via random interactions following quenches from the perspective of entanglement. Previous studies have shown that when a system of two SYK models coupled by random two-body terms is quenched from the thermofield double state with sufficiently low effective temperature, the Rényi entropies do not saturate to the expected thermal values in the large-N limit. Using numerical large-N methods, we first show that the Rényi entropies in a pair SYK models coupled by two-body terms can thermalize, if quenched from a state with sufficiently high effective temperature, and hence exhibit state-dependent thermalization. In contrast, SYK models coupled by single-body terms appear to always thermalize. We provide evidence that the subthermal behavior in the former system is likely a large-N artifact by repeating the quench for finite N and finding that the saturation value of the Rényi entropy extrapolates to the expected thermal value in the N → ∞ limit. Finally, as a finer grained measure of thermalization, we compute the late-time spectral form factor of the reduced density matrix after the quench. While a single SYK dot exhibits perfect agreement with random matrix theory, both the quadratically and quartically coupled SYK models exhibit slight deviations.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Stefan Förste ◽  
Hans Jockers ◽  
Joshua Kames-King ◽  
Alexandros Kanargias

Abstract We study the duality between JT gravity and the double-scaled matrix model including their respective deformations. For these deformed theories we relate the thermal partition function to the generating function of topological gravity correlators that are determined as solutions to the KdV hierarchy. We specialise to those deformations of JT gravity coupled to a gas of defects, which conforms with known results in the literature. We express the (asymptotic) thermal partition functions in a low temperature limit, in which non-perturbative corrections are suppressed and the thermal partition function becomes exact. In this limit we demonstrate that there is a Hawking-Page phase transition between connected and disconnected surfaces for this instance of JT gravity with a transition temperature affected by the presence of defects. Furthermore, the calculated spectral form factors show the qualitative behaviour expected for a Hawking-Page phase transition. The considered deformations cause the ramp to be shifted along the real time axis. Finally, we comment on recent results related to conical Weil-Petersson volumes and the analytic continuation to two-dimensional de Sitter space.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Diptarka Das ◽  
Shouvik Datta

Abstract We investigate the connection between spacetime wormholes and ensemble averaging in the context of higher spin AdS3/CFT2. Using techniques from modular bootstrap combined with some holographic inputs, we evaluate the partition function of a Euclidean wormhole in AdS3 higher spin gravity. The fixed spin sectors of the dual CFT2 exhibit features that starkly go beyond conventional random matrix ensembles: power-law ramps in the spectral form factor and potentials with a double-well/crest underlying the level statistics.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Raghu Mahajan ◽  
Donald Marolf ◽  
Jorge E. Santos

Abstract In gauge/gravity duality, the bulk double cone geometry has been argued to account for a key feature of the spectral form factor known as the ramp. This feature is deeply associated with quantum chaos in the dual field theory. The connection with the ramp has been demonstrated in detail for two-dimensional theories of bulk gravity, but it appears natural in higher dimensions as well. In a general bulk theory the double cone might thus be expected to dominate the semiclassical bulk path integral for the boundary spectral form factor in the ramp regime. While other known spacetime wormholes have been shown to be unstable to brane nucleation when they dominate over known disconnected (factorizing) solutions, we argue below that the double cone is stable to semiclassical brane nucleation at the probe-brane level in a variety of string- and M-theory settings. Possible implications for the AdS/CFT factorization problem are briefly discussed.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Kazumi Okuyama ◽  
Kazuhiro Sakai

Abstract We study Fateev-Zamolodchikov-Zamolodchikov-Teschner (FZZT) branes in Witten-Kontsevich topological gravity, which includes Jackiw-Teitelboim (JT) gravity as a special case. Adding FZZT branes to topological gravity corresponds to inserting determinant operators in the dual matrix integral and amounts to a certain shift of the infinitely many couplings of topological gravity. We clarify the perturbative interpretation of adding FZZT branes in the genus expansion of topological gravity in terms of a simple boundary factor and the generalized Weil-Petersson volumes. As a concrete illustration we study JT gravity in the presence of FZZT branes and discuss its relation to the deformations of the dilaton potential that give rise to conical defects. We then construct a non-perturbative formulation of FZZT branes and derive a closed expression for the general correlation function of multiple FZZT branes and multiple macroscopic loops. As an application we study the FZZT-macroscopic loop correlators in the Airy case. We observe numerically a void in the eigenvalue density due to the eigenvalue repulsion induced by FZZT-branes and also the oscillatory behavior of the spectral form factor which is expected from the picture of eigenbranes.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jordan Cotler ◽  
Kristan Jensen

Abstract We compute the path integral of three-dimensional gravity with negative cosmological constant on spaces which are topologically a torus times an interval. These are Euclidean wormholes, which smoothly interpolate between two asymptotically Euclidean AdS3 regions with torus boundary. From our results we obtain the spectral correlations between BTZ black hole microstates near threshold, as well as extract the spectral form factor at fixed momentum, which has linear growth in time with small fluctuations around it. The low-energy limit of these correlations is precisely that of a double-scaled random matrix ensemble with Virasoro symmetry. Our findings suggest that if pure three-dimensional gravity has a holographic dual, then the dual is an ensemble which generalizes random matrix theory.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Arkaprava Mukherjee ◽  
Shinobu Hikami

Abstract The quantum chaos is related to a Gaussian random matrix model, which shows a dip-ramp-plateau behavior in the spectral form factor for the large size N. The spectral form factor of time dependent Gaussian random matrix model shows also dip-ramp-plateau behavior with a rounding behavior instead of a kink near Heisenberg time. This model is converted to two matrix model, made of M1 and M2. The numerical evaluation for finite N and analytic expression in the large N are compared for the spectral form factor.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Mikhail Khramtsov ◽  
Elena Lanina

Abstract In this note we study the spectral form factor in the SYK model in large q limit at infinite temperature. We construct analytic solutions for the saddle point equations that describe the slope and the ramp regions of the spectral form factor time dependence. These saddle points are obtained by taking different approaches to the large q limit: the slope region is described by a replica-diagonal solution and the ramp region is described by a replica-nondiagonal solution. We find that the onset of the ramp behavior happens at the Thouless time of order q log q. We also evaluate the one-loop corrections to the slope and ramp solutions for late times, and study the transition from the slope to the ramp. We show this transition is accompanied by the breakdown of the perturbative 1/q expansion, and that the Thouless time is defined by the consistency of extrapolation of this expansion to late times.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Abhishodh Prakash ◽  
J. H. Pixley ◽  
Manas Kulkarni
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document