Weighing Polyelectrolytes Packaged in Viruslike Particles

2014 ◽  
Vol 113 (12) ◽  
Author(s):  
Guillaume Tresset ◽  
Mouna Tatou ◽  
Clémence Le Cœur ◽  
Mehdi Zeghal ◽  
Virginie Bailleux ◽  
...  
Keyword(s):  
1989 ◽  
Vol 9 (8) ◽  
pp. 3323-3331
Author(s):  
Y X Liu ◽  
C L Dieckmann

Saccharomyces cerevisiae strains are often host to several types of cytoplasmic double-stranded RNA (dsRNA) genomes, some of which are encapsidated by the L-A dsRNA product, an 86,000-dalton coat protein. Here we present the finding that nuclear recessive mutations in the NUC1 gene, which encodes the major nonspecific nuclease of yeast mitochondria, resulted in at least a 10-fold increase in amounts of the L-A dsRNA and its encoded coat protein. The effect of nuc1 mutations on L-A abundance was completely suppressed in strains that also hosted the killer-toxin-encoding M dsRNA. Both NUC1 and nuc1 strains containing the L-A genome exhibited an increase in coat protein abundance and a concomitant increase in L-A dsRNA when the cells were grown on a nonfermentable carbon source rather than on glucose, an effect independent of the increase in coat protein due to nuc1 mutations or to the absence of M. The increase in L-A expression in nuc1 strains was similar to that observed in strains with mutations in the nuclear gene encoding the most abundant outer mitochondrial membrane protein, porin. nuc1 mutations did not affect the level of porin in the mitochondrial outer membrane. Since the effect of mutations in nuc1 was to alter the copy number of the L-A coat protein genome rather than to change the level of the M toxin genome (as do mak and ski mutations), these mutations define a new class of nuclear genes affecting yeast dsRNA abundance.


1986 ◽  
Vol 6 (5) ◽  
pp. 1552-1561
Author(s):  
R Esteban ◽  
R B Wickner

Killer strains of Saccharomyces cerevisiae bear at least two different double-stranded RNAs (dsRNAs) encapsidated in 39-nm viruslike particles (VLPs) of which the major coat protein is coded by the larger RNA (L-A dsRNA). The smaller dsRNA (M1 or M2) encodes an extracellular protein toxin (K1 or K2 toxin). Based on their densities on CsCl gradients, L-A- and M1-containing particles can be separated. Using this method, we detected a new type of M1 dsRNA-containing VLP (M1-H VLP, for heavy) that has a higher density than those previously reported (M1-L VLP, for light). M1-H and M1-L VLPs are present together in the same strains and in all those we tested. M1-H, M1-L, and L-A VLPs all have the same types of proteins in the same approximate proportions, but whereas L-A VLPs and M1-L VLPs have one dsRNA molecule per particle, M1-H VLPs contain two M1 dsRNA molecules per particle. Their RNA polymerase produces mainly plus single strands that are all extruded in the case of M1-H particles but are partially retained inside the M1-L particles to be used later for dsRNA synthesis. We show that M1-H VLPs are formed in vitro from the M1-L VLPs. We also show that the peak of M1 dsRNA synthesis is in fractions lighter than M1-L VLPs, presumably those carrying only a single plus M1 strand. We suggest that VLPs carrying two M1 dsRNAs (each 1.8 kilobases) can exist because the particle is designed to carry one L-A dsRNA (4.5 kilobases).


1989 ◽  
Vol 9 (3) ◽  
pp. 1100-1108 ◽  
Author(s):  
M Dihanich ◽  
E van Tuinen ◽  
J D Lambris ◽  
B Marshallsay

The lack of mitochondrial porin is not lethal in Saccharomyces cerevisiae, but it impairs some respiratory functions and, therefore, growth on nonfermentable carbon sources such as glycerol. However, after a lag phase porinless mutant cells adapt to growth on glycerol, accumulating large amounts of an 86-kilodalton (kDa) protein (M. Dihanich, K. Suda, and G. Schatz, EMBO J. 6:723-728, 1987) and of a 5-kilobase RNA. Immunogold labeling localized the 86 kDa-protein exclusively to the cytosol fraction, although most of it cosedimented with the microsome fraction in earlier cell fractionations. This discrepancy was resolved when the 86-kDa protein was identified as the major coat protein in viruslike particles (VLPs) which is encoded by a double-stranded RNA (L-A RNA). Elimination of VLPs in the original porinless strain by introduction of the mak10 or the mak3 mutation increased the respiratory defect and prolonged its lag phase on nonfermentable carbon sources. The fact that the simultaneous loss of VLPs and respiratory functions are the introduction of mak10 or mak3 occurred even in some porin-containing wild-type strains suggests that there is a link between VLP and mitochondrial functions.


1974 ◽  
Vol 49 (2) ◽  
pp. 211-217 ◽  
Author(s):  
S.B. Clitheroe ◽  
L.V. Evans

Langmuir ◽  
2018 ◽  
Vol 34 (24) ◽  
pp. 7171-7179 ◽  
Author(s):  
Wenrong Zhao ◽  
Hong Sun ◽  
Yitong Wang ◽  
Julian Eastoe ◽  
Shuli Dong ◽  
...  

1970 ◽  
Vol 25 (7) ◽  
pp. 711-713 ◽  
Author(s):  
D. Schubert ◽  
H. Frank

In mixtures of 1 volume of buffer and 2 volumes of 2-chloroethanol, the icosahedral bacteriophage fr is split into RNA and monomeric protein subunits. After removal of the RNA and after replacement of the organic solvent by water, viruslike particles can be obtained by dialysis of the protein against neutral buffers of high ionic strength, whereas multishell particles are formed in buffers of low ionic strength. All results achieved by the use of 2-chloroethanol are very similar to those obtained using acetic acid.


Sign in / Sign up

Export Citation Format

Share Document