scholarly journals Yang-Mills as Massive Chern-Simons Theory: A Third Way to Three-Dimensional Gauge Theories

2015 ◽  
Vol 114 (18) ◽  
Author(s):  
Alex S. Arvanitakis ◽  
Alexander Sevrin ◽  
Paul K. Townsend
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masazumi Honda ◽  
Naotaka Kubo

Abstract It has been conjectured that duality cascade occurs in the $$ \mathcal{N} $$ N = 3 supersymmetric Yang-Mills Chern-Simons theory with the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $$ \mathcal{N} $$ N = 3 supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on S3 partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.


1990 ◽  
Vol 05 (05) ◽  
pp. 959-988 ◽  
Author(s):  
MICHIEL BOS ◽  
V.P. NAIR

Three-dimensional Chern-Simons gauge theories are quantized in a functional coherent state formalism. The connection with two-dimensional conformal field theory is found to emerge naturally. The normalized wave functionals are identified as generating functionals for the chiral blocks of two-dimensional current algebra.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Meer Ashwinkumar ◽  
Kee-Seng Png ◽  
Meng-Chwan Tan

Abstract We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symmetry. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Clay Cordova ◽  
Po-Shen Hsin ◽  
Nathan Seiberg

We study three-dimensional gauge theories based on orthogonal groups. Depending on the global form of the group these theories admit discrete \thetaθ-parameters, which control the weights in the sum over topologically distinct gauge bundles. We derive level-rank duality for these topological field theories. Our results may also be viewed as level-rank duality for SO(N)_{K}SO(N)K Chern-Simons theory in the presence of background fields for discrete global symmetries. In particular, we include the required counterterms and analysis of the anomalies. We couple our theories to charged matter and determine how these counterterms are shifted by integrating out massive fermions. By gauging discrete global symmetries we derive new boson-fermion dualities for vector matter, and present the phase diagram of theories with two-index tensor fermions, thus extending previous results for SO(N)SO(N) to other global forms of the gauge group.


1995 ◽  
Vol 73 (5-6) ◽  
pp. 344-348 ◽  
Author(s):  
Yeong-Chuan Kao ◽  
Hsiang-Nan Li

We show that the two-loop contribution to the coefficient of the Chern–Simons term in the effective action of the Yang–Mills–Chern–Simons theory is infrared finite in the background field Landau gauge. We also discuss the difficulties in verifying the conjecture, due to topological considerations, that there are no more quantum corrections to the Chern–Simons term other than the well-known one-loop shift of the coefficient.


2009 ◽  
Vol 24 (07) ◽  
pp. 1309-1331 ◽  
Author(s):  
ANTON M. ZEITLIN

We show explicitly how Batalin–Vilkovisky Yang–Mills action emerges as a homotopy generalization of Chern–Simons theory from the algebraic constructions arising from string field theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Leonardo Santilli ◽  
Richard J. Szabo ◽  
Miguel Tierz

Abstract We derive the $$ T\overline{T} $$ T T ¯ -perturbed version of two-dimensional q-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the $$ T\overline{T} $$ T T ¯ -deformation results in a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large N factorization into chiral and anti-chiral sectors. For the U(N) gauge theory on the sphere, we show that the large N phase transition persists, and that it is of third order and induced by instantons. The effect of the $$ T\overline{T} $$ T T ¯ -deformation is to decrease the critical value of the ’t Hooft coupling, and also to extend the class of line bundles for which the phase transition occurs. The same results are shown to hold for (q, t)-deformed Yang-Mills theory. We also explicitly evaluate the entanglement entropy in the large N limit of Yang-Mills theory, showing that the $$ T\overline{T} $$ T T ¯ -deformation decreases the contribution of the Boltzmann entropy.


Sign in / Sign up

Export Citation Format

Share Document