scholarly journals The effect of geomagnetic field on radio signal patterns from cosmic ray air showers

Author(s):  
Mohammad Sabouhi ◽  
Gohar Rastegarzadeh
JETP Letters ◽  
1999 ◽  
Vol 69 (4) ◽  
pp. 288-293 ◽  
Author(s):  
A. A. Ivanov ◽  
V. P. Egorova ◽  
V. A. Kolosov ◽  
A. D. Krasil’nikov ◽  
M. I. Pravdin ◽  
...  

2006 ◽  
Vol 21 (supp01) ◽  
pp. 60-64
Author(s):  
T. HUEGE ◽  
H. FALCKE

As a basis for the interpretation of data gathered by LOPES and other experiments, we have carried out Monte Carlo simulations of geosynchrotron radio emission from cosmic ray air showers. The simulations, having been verified carefully with analytical calculations, reveal a wealth of information on the characteristics of the radio signal and their dependence on specific air shower parameters. In this article, we review the spatial characteristics of the radio emission, its predicted frequency spectrum and its dependence on important air shower parameters such as the shower zenith angle, the primary particle energy and the depth of the shower maximum, which can in turn be related to the nature of the primary particle.


2019 ◽  
Vol 216 ◽  
pp. 03001
Author(s):  
Christian Glaser ◽  
Sijbrand de Jong ◽  
Martin Erdmann ◽  
Jörg R. Hörandel

The spatial signal distribution of the radio frequency radiation from extensive air showers on the ground contains information on crucial cosmic-ray properties, such as energy and mass. A long-standing challenge to access this information experimentally with a sparse grid of antennas is an analytic modeling of the radio signal distribution, which will be addressed in this contribution. We present an analytic model based on the two physical processes generating radio emission in air showers: the geomagnetic and the charge-excess emission. Our study is based on full Monte-Carlo simulations with the CoREAS code. Besides an improved theoretical understanding of radio emission, our model describes the radio signal distribution with unprecedented precision. Our model explicitly includes polarization information, which basically doubles the information that is used from a single radio station. The model depends only on the definition of the shower axis and on the parameters energy and distance to the emission region, where the distance to the emission region has a direct relation to the cosmic-ray mass. The model describes the true signal distribution precisely such that the model uncertainties are negligible compared to typical experimental uncertainties.


2019 ◽  
Vol 216 ◽  
pp. 02001 ◽  
Author(s):  
Marvin Gottowik

The Pierre Auger Observatory is the largest observatory for the detection of cosmic rays. With the Auger Engineering Radio Array (AERA) we measure the emitted radio signal of extensive air showers and reconstruct properties of the primary cosmic rays. For horizontal air showers (zenith angles larger than 60°) the signal is distributed over a large area of more than several km2. Therefore, detection of air showers using a sparse radio antenna array, compatible with the 1500 m distance between the 1600 surface detector stations, is possible. The radio technique is sensitive to the electromagnetic component of air showers. Combining radio detection with particle information from the surface detector of the Observatory, which at large zenith angles mostly detects muons, allows to study the cosmic ray composition for horizontal air showers.


2014 ◽  
Vol 2014 (09) ◽  
pp. 025-025 ◽  
Author(s):  
W.D. Apel ◽  
J.C. Arteaga-Velázquez ◽  
L. Bähren ◽  
K. Bekk ◽  
M. Bertaina ◽  
...  
Keyword(s):  

2020 ◽  
Vol 500 (4) ◽  
pp. 5583-5588
Author(s):  
Man Ho Chan ◽  
Chak Man Lee

ABSTRACT In the past decade, various instruments, such as the Large Area Telescope (LAT) on the Fermi Gamma Ray Space Telescope, the Alpha Magnetic Spectrometer (AMS) and the Dark Matter Particle Explorer(DAMPE), have been used to detect the signals of annihilating dark matter in our Galaxy. Although some excesses of gamma rays, antiprotons and electrons/positrons have been reported and are claimed to be dark matter signals, the uncertainties of the contributions of Galactic pulsars are still too large to confirm the claims. In this paper, we report on a possible radio signal of annihilating dark matter manifested in the archival radio continuum spectral data of the Abell 4038 cluster. By assuming a thermal annihilation cross-section and comparing the dark matter annihilation model with the null hypothesis (cosmic ray emission without dark matter annihilation), we obtain very large test statistic (TS) values, TS > 45, for four popular annihilation channels, which correspond to more than 6σ statistical preference. This reveals a possible potential signal of annihilating dark matter. In particular, our results are also consistent with the recent claims of dark matter mass, m ≈ 30–50 GeV, annihilating via the $\rm b\bar{b}$ quark channel with the thermal annihilation cross-section. However, at this time, we cannot exclude the possibility that a better background cosmic ray model could explain the spectral data without recourse to dark matter annihilations.


2019 ◽  
Vol 495 (1) ◽  
pp. L124-L128 ◽  
Author(s):  
Man Ho Chan ◽  
Chak Man Lee

ABSTRACT In the past decade, some telescopes [e.g. Fermi-Large Area Telescope (LAT), Alpha Magnetic Spectrometer(AMS), and Dark Matter Particle Explorer(DAMPE)] were launched to detect the signals of annihilating dark matter in our Galaxy. Although some excess of gamma-rays, antiprotons, and electrons/positrons have been reported and claimed as dark matter signals, the uncertainties of Galactic pulsars’ contributions are still too large to confirm the claims. In this Letter, we report a possible radio signal of annihilating dark matter manifested in the archival radio continuum spectral data of the Abell 4038 cluster. By assuming the thermal annihilation cross-section and comparing the dark matter annihilation model with the null hypothesis (cosmic ray emission without dark matter annihilation), we get very large test statistic values >45 for four popular annihilation channels, which correspond to more than 6.5σ statistical preference. This provides a very strong evidence for the existence of annihilating dark matter. In particular, our results also support the recent claims of dark matter mass m ≈ 30–50 GeV annihilating via the bb̄ quark channel with the thermal annihilation cross-section.


Sign in / Sign up

Export Citation Format

Share Document