scholarly journals Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

2016 ◽  
Vol 117 (14) ◽  
Author(s):  
Oleksandr Kyriienko ◽  
Anders S. Sørensen
2021 ◽  
Vol 2086 (1) ◽  
pp. 012096
Author(s):  
Aleksei Reutov ◽  
Denis Sych

Abstract Measurement of photon statistics is an important tool for the verification of quantum properties of light. Due to the various imperfections of real single photon detectors, the observed statistics of photon counts deviates from the underlying statistics of photons. Here we analyze statistical properties of coherent states, and investigate a connection between Poissonian distribution of photons and sub-Poissonian distribution of photon counts due to the detector dead-time corrections. We derive a functional dependence between the mean number of photons and the mean number of photon counts, as well as connection between higher-order statistical moments, for the pulsed or continuous wave coherent light sources, and confirm the results by numerical simulations.


1998 ◽  
Vol 52 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Steven A. Soper ◽  
Benjamin L. Legendre

While single-molecule detection in flowing sample streams has been reported by a number of groups, the instrumentation can be somewhat prohibitive for many applications due to the complexity and extensive expertise required to operate such a device. In this paper we report on the construction of a single-molecule detection device that is rugged, compact, inexpensive, and easily operated by individuals not well trained in optics and laser operations. The single-molecule detection apparatus consists of a semiconductor diode laser operating in a continuous-wave (CW) mode and a single photon avalanche diode transducer for converting the detected photons into transistor–transistor logic (TTL) pulses for displaying the data. In addition, the sampling volume is produced by a single-component lens, to create a volume on the order of 1 pL, allowing the sampling of microliter volumes of material on reasonable time scales. The device is targeted for operation in the near-IR region (700–1000 nm), where matrix interferences are minimal. Our data will demonstrate the detection of single molecules for the near-IR dyes IR-132 and IR-125, in methanol solvents in flowing sample streams at sampling rates of 100–250 samples/s. Detection efficiencies for the investigated near-IR dyes were found to be 98% for IR-132 and 50% for IR-125. Previous attempts in our laboratory to detect single molecules of IR-125 using time-gated detection were unsuccessful because of the short upper-state lifetime of this fluorophore (τf = 472 ps).


2006 ◽  
Vol 74 (3) ◽  
Author(s):  
Yun-Feng Xiao ◽  
Xu-Bo Zou ◽  
Yong Hu ◽  
Zheng-Fu Han ◽  
Guang-Can Guo

2011 ◽  
Vol 28 (2) ◽  
pp. 131-147 ◽  
Author(s):  
Amin R. Nehrir ◽  
Kevin S. Repasky ◽  
John L. Carlsten

Abstract A second-generation diode-laser-based master oscillator power amplifier (MOPA) configured micropulse differential absorption lidar (DIAL) instrument for profiling of lower-tropospheric water vapor is presented. The DIAL transmitter is based on a continuous wave (cw) external cavity diode laser (ECDL) master oscillator that is used to injection seed two cascaded tapered semiconductor optical power amplifiers, which deliver up to 2-μJ pulse energies over a 1-μs pulse duration at 830 nm with an average power of ∼40 mW at a pulse repetition frequency of 20 kHz. The DIAL receiver utilizes a commercial 28-cm-diameter Schmidt–Cassegrain telescope, a 250-pm narrowband optical filter, and a fiber-coupled single-photon-counting Avalanche photodiode (APD) detector, yielding a far-field full-angle field of view of 170 μrad. A detailed description of the second-generation Montana State University (MSU) DIAL instrument is presented. Water vapor number density profiles and time–height cross sections collected with the water vapor DIAL instrument are also presented and compared with collocated radiosonde measurements, demonstrating the instruments ability to measure night- and daytime water vapor profiles in the lower troposphere.


2021 ◽  
Author(s):  
Paul Anderson ◽  
Divya Bharadwaj ◽  
Rubayet Al Maruf ◽  
Jiawei Qiu ◽  
Yujia Yuan ◽  
...  

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Billy Lam ◽  
Mohamed ElKabbash ◽  
Jihua Zhang ◽  
Chunlei Guo

Reading quantum information of single photons is commonly realized by quantum tomography or the direct (weak) measurement approach. However, these methods are time-consuming and face enormous challenges in characterizing single photons from an ultrafast light source due to the stringent temporal mode matching requirements. Here, we retrieve the spatial wavefunction of indistinguishable single photons from both a continuous wave source and a femtosecond light source using a self-referencing interferometer. Our method only requires nine ensemble-averaged measurements. This technique simplifies the measurement procedure of single-photon wavefunction and automatically mode matches each self-interfering single photon temporally, which enables the measurement of the spatial wavefunction of single photons from an ultrafast light source.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chenxu Liu ◽  
Maria Mucci ◽  
Xi Cao ◽  
M. V. Gurudev Dutt ◽  
Michael Hatridge ◽  
...  

AbstractDue to their high coherence, lasers are ubiquitous tools in science. We show that by engineering the coupling between the gain medium and the laser cavity as well as the laser cavity and the output port, it is possible to eliminate most of the noise due to photons entering as well as leaving the laser cavity. Hence, it is possible to reduce the laser linewidth by a factor equal to the number of photons in the laser cavity below the standard quantum limit. We design and theoretically analyze a superconducting circuit that uses Josephson junctions, capacitors and inductors to implement a microwave laser, including the low-noise couplers that allow the design to surpass the standard quantum limit. Our proposal relies on the elements of superconducting quantum information, and thus is an example of how quantum engineering techniques can inspire us to re-imagine the limits of conventional quantum systems.


Sign in / Sign up

Export Citation Format

Share Document