scholarly journals Searching for Near-Horizon Quantum Structures in the Binary Black-Hole Stochastic Gravitational-Wave Background

2018 ◽  
Vol 121 (5) ◽  
Author(s):  
Song Ming Du ◽  
Yanbei Chen
2021 ◽  
Vol 104 (2) ◽  
Author(s):  
T. Mishra ◽  
B. O’Brien ◽  
V. Gayathri ◽  
M. Szczepańczyk ◽  
S. Bhaumik ◽  
...  

2016 ◽  
Vol 12 (S324) ◽  
pp. 287-290
Author(s):  
Barbara De Lotto ◽  
Stefano Ansoldi ◽  
Angelo Antonelli ◽  
Alessio Berti ◽  
Alessandro Carosi ◽  
...  

AbstractThe year 2015 witnessed the first direct observations of a transient gravitational-wave (GW) signal from binary black hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) Collaboration with the Virgo Collaboration. The MAGIC two 17m diameter Cherenkov telescopes system joined since 2014 the vast collaboration of electromagnetic facilities for follow-up of gravitational wave alerts. During the 2015 LIGO-Virgo science run we set up the procedure for GW alerts follow-up and took data following the last GW alert. MAGIC results on the data analysis and prospects for the forthcoming run are presented.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Chayan Chatterjee ◽  
Linqing Wen ◽  
Foivos Diakogiannis ◽  
Kevin Vinsen

2018 ◽  
Vol 855 (1) ◽  
pp. 34 ◽  
Author(s):  
László Gondán ◽  
Bence Kocsis ◽  
Péter Raffai ◽  
Zsolt Frei

2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.


2020 ◽  
Vol 101 (12) ◽  
Author(s):  
Feroz H. Shaik ◽  
Jacob Lange ◽  
Scott E. Field ◽  
Richard O’Shaughnessy ◽  
Vijay Varma ◽  
...  

2014 ◽  
Vol 90 (2) ◽  
Author(s):  
Satya Mohapatra ◽  
Laura Cadonati ◽  
Sarah Caudill ◽  
James Clark ◽  
Chad Hanna ◽  
...  

2020 ◽  
Vol 35 (31) ◽  
pp. 2050205
Author(s):  
Aung Naing Win ◽  
Yu-Ming Chu ◽  
Hasrat Hussain Shah ◽  
Syed Zaheer Abbas ◽  
Munawar Shah

A Satellite Fermi GBM detected recent putative short Gamma Ray Bursts (GRBs) in coincident with the gravitational wave signal GW 150914 produced by the merger of binary black hole (BH). If at least one BH possess magnetic monopole charge in the binary BH system then the short-duration GRBs may produce during the final phase of a binary BH merger. The detection of gravitational waves GW 150914, GW 151226 and LVT 151012 by LIGO gave the evidence that merging of the compact object like binary BH often happens in our universe. In this paper, we report the qualitative model to discuss the generation of electromagnetic radiation from the merging of two BHs with equal masses and at least one BH carrying the magnetic monopole charge in the binary system. In this model, BH possess a magnetic monopole charge that may not be neutralized before the coalescence. During the inspiralling process, the magnetic monopole charge on the BH would produced the electric dipole moment. Short duration GRB would produce by the rapidly evolution of the electric dipole moment which may detectable on Earth. We predict that this model would be beneficial in the future to explain the generation of gravitational wave (GW) plus a electromagnetic signal of multi-wavelength from mergers of magnetically charged BHs.


Sign in / Sign up

Export Citation Format

Share Document