scholarly journals Thermodynamics of Animal Locomotion

2020 ◽  
Vol 125 (22) ◽  
Author(s):  
E. Herbert ◽  
H. Ouerdane ◽  
Ph. Lecoeur ◽  
V. Bels ◽  
Ch. Goupil
Keyword(s):  
2010 ◽  
Vol 1 (1) ◽  
pp. 51-62
Author(s):  
Marta Braun

Eadweard Muybridge's 1887 photographic atlas Animal Locomotion is a curious mixture of art and science, a polysemic text that has been subject to a number of readings. This paper focuses on Muybridge's technology. It seeks to understand his commitment to making photographs with a battery of cameras rather than a single camera. It suggests reasons for his choice of apparatus and shows how his final work, The Human Figure in Motion (1901), justifies the choices he made.


Studies of animal locomotion are grounded in an understanding of the physical principles that govern how animals move and properties of the media through which they move. These studies, in turn, explain why certain biological devices, such as a wing or a fin, share features that have evolved for movement within their particular fluid environments. In this chapter, we examine the role of the environment and the fundamentals of loading and forces in animal mechanics. We offer a quick review of scaling analyses as well as the key dimensions and units used in this book to assist with your appreciation of the information.


The power of locomotion is, perhaps, one of the most striking attributes of animal life. It occurs in all groups of animals and is characterized by two conspicuous features: (i) In no other biological activity is an animal brought into closer and more intimate contact with its environment. (ii) Closely related animals may display striking differences of locomotory pattern yet in every cast the animal is able to deal precisely and efficiently with mechanical problems of great complexity. For many years, the study of animal locomotion has been concerned with two, apparently distinct, types of problems. First, attention has been paid to the mechanical or kinematic principles which animals employ in order to progress from one place to another. In many terrestrial animals these principles are relatively simple, for their limbs represent levers of one type or another; in other cases the mechanical principles are more obscure—we know little concerning the kinematics of movement of a fish or a snail, and little or nothing of the forces which propel a bird actively through the air. These problems have long attracted attention and it is encouraging to know that they are now being attacked by methods as precise and as controlled as those employed by aeronautical or marine engineers. The second type of problem is of a different nature; it is concerned with physiological nature of the locomotory machine. What is the nature of the neuro-muscular mechanism which enables and animal to utilize its muscular energy with such conspicuous precision and efficiency? How far are the movements dependent on the higher nervous centres, and how far are they dependent on the receipt of time signals from the outside world?


2009 ◽  
Vol 28 (3) ◽  
pp. 1-8 ◽  
Author(s):  
Kevin Wampler ◽  
Zoran Popović

Science ◽  
1974 ◽  
Vol 184 (4141) ◽  
pp. 1098-1098
Author(s):  
Albert Gold

1998 ◽  
Vol 201 (7) ◽  
pp. 981-995 ◽  
Author(s):  
J. A. Walker

Functional biologists employ numerical differentiation for many purposes, including (1) estimation of maximum velocities and accelerations as measures of behavioral performance, (2) estimation of velocity and acceleration histories for biomechanical modeling, and (3) estimation of curvature, either of a structure during movement or of the path of movement itself. I used a computer simulation experiment to explore the efficacy of ten numerical differentiation algorithms to reconstruct velocities and accelerations accurately from displacement data. These algorithms include the quadratic moving regression (MR), two variants of an automated Butterworth filter (BF1-2), four variants of a method based on the signal's power spectrum (PSA1-4), an approximation to the Wiener filter due to Kosarev and Pantos (KPF), and both a generalized cross-validatory (GCV) and predicted mean square error (MSE) quintic spline. The displacement data simulated the highly aperiodic escape responses of a rainbow trout Oncorhynchus mykiss and a Northern pike Esox lucius (published previously). I simulated the effects of video speed (60, 125, 250, 500 Hz) and magnification (0.25, 0.5, 1 and 2 screen widths per body length) on algorithmic performance. Four performance measures were compared: the per cent error of the estimated maximum velocity (Vmax) and acceleration (Amax) and the per cent root mean square error over the middle 80 % of the velocity (VRMSE) and acceleration (ARMSE) profiles. The results present a much more optimistic role for numerical differentiation than suggested previously. Overall, the two quintic spline algorithms performed best, although the rank order of the methods varied with video speed and magnification. The MSE quintic spline was extremely stable across the entire parameter space and can be generally recommended. When the MSE spline was outperformed by another algorithm, both the difference between the estimates and the errors from true values were very small. At high video speeds and low video magnification, the GCV quintic spline proved unstable. KPF and PSA2-4 performed well only at high video speeds. MR and BF1-2 methods, popular in animal locomotion studies, performed well when estimating velocities but poorly when estimating accelerations. Finally, the high variance of the estimates for some methods should be considered when choosing an algorithm.


Author(s):  
Christoffer L. Johansson ◽  
Florian T. Muijres ◽  
Anders Hedenström
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document