scholarly journals Seamless High- Q Microwave Cavities for Multimode Circuit Quantum Electrodynamics

2021 ◽  
Vol 127 (10) ◽  
Author(s):  
Srivatsan Chakram ◽  
Andrew E. Oriani ◽  
Ravi K. Naik ◽  
Akash V. Dixit ◽  
Kevin He ◽  
...  
Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 372 ◽  
Author(s):  
Francisco Cárdenas-López ◽  
Guillermo Romero ◽  
Lucas Lamata ◽  
Enrique Solano ◽  
Juan Retamal

We propose a method to generate nonclassical states of light in multimode microwave cavities. Our approach considers two-photon processes that take place in a system composed of N extended cavities and an ultrastrongly coupled light–matter system. Under specific resonance conditions, our method generates, in a deterministic manner, product states of uncorrelated photon pairs, Bell states, and W states in different modes on the extended cavities. Furthermore, the numerical simulations show that the generation scheme exhibits a collective effect which decreases the generation time in the same proportion as the number of extended cavity increases. Moreover, the entanglement encoded in the photonic states can be transferred towards ancillary two-level systems to generate genuine multipartite entanglement. Finally, we discuss the feasibility of our proposal in circuit quantum electrodynamics. This proposal could be of interest in the context of quantum random number generator, due to the quadratic scaling of the output state.


2010 ◽  
Vol 81 (14) ◽  
Author(s):  
Georg M. Reuther ◽  
David Zueco ◽  
Frank Deppe ◽  
Elisabeth Hoffmann ◽  
Edwin P. Menzel ◽  
...  

2015 ◽  
Vol 40 (23) ◽  
pp. 5602 ◽  
Author(s):  
Tong Liu ◽  
Shao-Jie Xiong ◽  
Xiao-Zhi Cao ◽  
Qi-Ping Su ◽  
Chui-Ping Yang

2021 ◽  
Vol 7 (21) ◽  
pp. eabe9492
Author(s):  
Paul Brookes ◽  
Giovanna Tancredi ◽  
Andrew D. Patterson ◽  
Joseph Rahamim ◽  
Martina Esposito ◽  
...  

Critical slowing down of the time it takes a system to reach equilibrium is a key signature of bistability in dissipative first-order phase transitions. Understanding and characterizing this process can shed light on the underlying many-body dynamics that occur close to such a transition. Here, we explore the rich quantum activation dynamics and the appearance of critical slowing down in an engineered superconducting quantum circuit. Specifically, we investigate the intermediate bistable regime of the generalized Jaynes-Cummings Hamiltonian (GJC), realized by a circuit quantum electrodynamics (cQED) system consisting of a transmon qubit coupled to a microwave cavity. We find a previously unidentified regime of quantum activation in which the critical slowing down reaches saturation and, by comparing our experimental results with a range of models, we shed light on the fundamental role played by the qubit in this regime.


2017 ◽  
Vol 119 (7) ◽  
Author(s):  
Moein Malekakhlagh ◽  
Alexandru Petrescu ◽  
Hakan E. Türeci

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathanaël Cottet ◽  
Haonan Xiong ◽  
Long B. Nguyen ◽  
Yen-Hsiang Lin ◽  
Vladimir E. Manucharyan

AbstractInterfacing long-lived qubits with propagating photons is a fundamental challenge in quantum technology. Cavity and circuit quantum electrodynamics (cQED) architectures rely on an off-resonant cavity, which blocks the qubit emission and enables a quantum non-demolition (QND) dispersive readout. However, no such buffer mode is necessary for controlling a large class of three-level systems that combine a metastable qubit transition with a bright cycling transition, using the electron shelving effect. Here we demonstrate shelving of a circuit atom, fluxonium, placed inside a microwave waveguide. With no cavity modes in the setup, the qubit coherence time exceeds 50 μs, and the cycling transition’s radiative lifetime is under 100 ns. By detecting a homodyne fluorescence signal from the cycling transition, we implement a QND readout of the qubit and account for readout errors using a minimal optical pumping model. Our result establishes a resource-efficient (cavityless) alternative to cQED for controlling superconducting qubits.


2014 ◽  
Vol 20 (1) ◽  
pp. 46-50
Author(s):  
赵英燕 ZHAO Ying-yan ◽  
高贵龙 GAO Gui-long ◽  
唐龙英 TANG Long-ying ◽  
姜年权 JIANG Nian-quan

Sign in / Sign up

Export Citation Format

Share Document