Experimental verification of critical exponents in the two-dimensional four-state Potts universality class: Oxygen on Ru(0001)

1987 ◽  
Vol 59 (10) ◽  
pp. 1124-1127 ◽  
Author(s):  
P. Piercy ◽  
H. Pfnür
2016 ◽  
Vol 27 (11) ◽  
pp. 1650134 ◽  
Author(s):  
F. W. S. Lima

We investigate the critical properties of the equilibrium and nonequilibrium systems on Solomon networks. The equilibrium and nonequilibrium systems studied here are the Ising and Majority-vote models, respectively. These systems are simulated by applying the Monte Carlo method. We calculate the critical points, as well as the critical exponents ratio [Formula: see text], [Formula: see text] and [Formula: see text]. We find that both systems present identical exponents on Solomon networks and are of different universality class as the regular two-dimensional ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.


1994 ◽  
Vol 08 (23) ◽  
pp. 3299-3311 ◽  
Author(s):  
IWAN JENSEN

I study the critical behavior of a two-dimensional dimer-trimer lattice model, introduced by Köhler and ben-Avraham,17a for heterogeneous catalysis of the reaction ½A2 + ⅓B3 → AB. The model possesses infinitely many absorbing states in which the lattice is saturated by adsorbed particles and reactions cease because only isolated vacancies are left. Results for various critical exponents show that the model exhibits the same critical behavior as directed percolation, contrary to earlier findings by Köhler and ben-Avraham. Together with several other studies, reviewed briefly in this article, this confirms that directed percolation is the generic universality class for models with infinitely many absorbing states.


Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...


2010 ◽  
Vol 81 (4) ◽  
Author(s):  
Juliano A. de Oliveira ◽  
R. A. Bizão ◽  
Edson D. Leonel

2017 ◽  
Vol 28 (08) ◽  
pp. 1750099
Author(s):  
F. W. S. Lima

We investigate the critical properties of the equilibrium and nonequilibrium two-dimensional (2D) systems on Solomon networks with both nearest and random neighbors. The equilibrium and nonequilibrium 2D systems studied here by Monte Carlo simulations are the Ising and Majority-vote 2D models, respectively. We calculate the critical points as well as the critical exponent ratios [Formula: see text], [Formula: see text], and [Formula: see text]. We find that numerically both systems present the same exponents on Solomon networks (2D) and are of different universality class than the regular 2D ferromagnetic model. Our results are in agreement with the Grinstein criterion for models with up and down symmetry on regular lattices.


1972 ◽  
Vol 94 (3) ◽  
pp. 226-232
Author(s):  
D. O. Rockwell

A theory is developed to describe the inviscid core in two-dimensional unstalled diffusers with suction (extraction) on the diverging walls. Experimental wall static pressure distributions and streamline patterns agree well with those predicted theoretically. Under appropriate extraction conditions, a stagnation region is located downstream of the diverging wall extraction station. Experimental verification of the streamline patterns and of the location of this stagnation region was achieved via hydrogen bubble visualization. In addition, the possible stall conditions, which result if improper extraction is employed, are described qualitatively.


2021 ◽  
Vol 237 ◽  
pp. 02023
Author(s):  
Bo Wang

Trench gate structure represents the latest structure of Insulated Gate Bipolar Transistor(IGBT). Because there are great differences in model analysis coordinate system and carrier transport between trench gate structure and planar gate structure, the modeling method using planar gate structure will inevitably have great deviation. Based on the characteristics of trench gate structure and model analysis coordinate system, the base region is divided into PNP and PIN by considering the two-dimensional effect of carriers. According to whether the trench of PIN part can be covered by depletion layer of PNP part, the specific base region current is analyzed. Finally, simulation and experimental verification are carried out.


2009 ◽  
Vol 2009 ◽  
pp. 1-22 ◽  
Author(s):  
Edson D. Leonel

A phase transition from integrability to nonintegrability in two-dimensional Hamiltonian mappings is described and characterized in terms of scaling arguments. The mappings considered produce a mixed structure in the phase space in the sense that, depending on the combination of the control parameters and initial conditions, KAM islands which are surrounded by chaotic seas that are limited by invariant tori are observed. Some dynamical properties for the largest component of the chaotic sea are obtained and described in terms of the control parameters. The average value and the deviation of the average value for chaotic components of a dynamical variable are described in terms of scaling laws, therefore critical exponents characterizing a scaling function that describes a phase transition are obtained and then classes of universality are characterized. The three models considered are: The Fermi-Ulam accelerator model, a periodically corrugate waveguide, and variant of the standard nontwist map.


Sign in / Sign up

Export Citation Format

Share Document