scholarly journals Prospecting for the Superfluid Transition in Electron-Hole Coupled Quantum Wells Using Coulomb Drag

2000 ◽  
Vol 85 (4) ◽  
pp. 820-823 ◽  
Author(s):  
Ben Yu-Kuang Hu
1999 ◽  
Vol 13 (05n06) ◽  
pp. 479-488 ◽  
Author(s):  
GAETANO SENATORE ◽  
F. RAPISARDA ◽  
S. CONTI

We review recent progress on the physics of electrons in the bilayered electron gas, relevant to coupled quantum wells in GaAs/AlGaAs heterostructures. First, we focus on the phase diagram of a symmetric bilayer at T=B=0, obtained by diffusion Monte Carlo simulations. It is found that inter–layer correlations stabilize crystalline structures at intermediate inter–layer separation, while favouring a liquid phase at smaller distance. Also, the available DMC evidence is in contrast with the recently (Hartree–Fock) predicted total charge transfer (TCT), whereby all the electron spontaneously jump in one layer. In fact, one can show that such a TCT state is never stable in the ideal bilayer with no tunneling. We finally comment on ongoing DMC investigations on the electron-hole bilayer, where excitonic condensation is expected to take place.


2016 ◽  
Vol 30 (24) ◽  
pp. 1630006 ◽  
Author(s):  
I. V. Bondarev

A configuration space method is developed for binding energy calculations of the lowest energy exciton complexes (trion, biexciton) in spatially confined quasi-1D semiconductor nanostructures such as nanowires and nanotubes. Quite generally, trions are shown to have greater binding energy in strongly confined structures with small reduced electron–hole masses. Biexcitons have greater binding energy in less confined structures with large reduced electron–hole masses. This results in a universal crossover behavior, whereby trions become less stable than biexcitons as the transverse size of the quasi-1D nanostructure increases. The method is also capable of evaluating binding energies for electron–hole complexes in quasi-2D semiconductors such as coupled quantum wells and bilayer van der Walls bound heterostructures with advanced optoelectronic properties.


2005 ◽  
Vol 14 (03) ◽  
pp. 449-460
Author(s):  
ALAN R. KOST ◽  
RON R. CARTER ◽  
ELSA M. GARMIRE ◽  
THOMAS C. HASENBERG

A light-induced broadening of excitonic absorption features was investigated for a hetero n-i-p-i structure containing coupled quantum wells. Light-induced differential absorption as large as 5000 cm-1 was observed with an irradiance of only 280 mW/cm2. The largest absorption change was positive and occurred at 814 nm, just below the absorption edge for the non-illuminated sample. The nonlinear optical response for this structure is unlike the response for conventional n-i-p-i structures which exhibit decreasing absorption below the absorption edge. A corresponding refractive index change was calculated from absorption measurements using a modified Kramers–Kronig relation. The maximum change in the refractive index was 0.01 at 818 nm, a wavelength where the absorption was small for both the illuminated and non-illuminated samples. The origin of the excitonic broadening is explained with calculations for the transition energy and transition strength of the four lowest energy optical transitions for the coupled quantum wells. The relatively low irradiance required to excite the sample is attributed to long electron-hole recombination time, measured to be between 100 and 700 μs, depending on the irradiance on the sample.


2019 ◽  
Vol 115 (20) ◽  
pp. 202105
Author(s):  
M. Zarenia ◽  
S. Conti ◽  
F. M. Peeters ◽  
D. Neilson

Sign in / Sign up

Export Citation Format

Share Document