scholarly journals Dynamical Self-Assembly of Nanocrystal Superlattices during Colloidal Droplet Evaporation byin situSmall Angle X-Ray Scattering

2004 ◽  
Vol 93 (13) ◽  
Author(s):  
Suresh Narayanan ◽  
Jin Wang ◽  
Xiao-Min Lin
2016 ◽  
Vol 15 (7) ◽  
pp. 775-781 ◽  
Author(s):  
Mark C. Weidman ◽  
Detlef-M. Smilgies ◽  
William A. Tisdale

2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


Small ◽  
2019 ◽  
Vol 15 (20) ◽  
pp. 1900438 ◽  
Author(s):  
Irina Lokteva ◽  
Michael Koof ◽  
Michael Walther ◽  
Gerhard Grübel ◽  
Felix Lehmkühler

2015 ◽  
Vol 71 (a1) ◽  
pp. s391-s391
Author(s):  
Matej Jergel ◽  
Karol Vegso ◽  
Peter Šiffalovič ◽  
Eva Majková ◽  
Adeline Buffet ◽  
...  

2014 ◽  
Vol 6 (11) ◽  
pp. 2352-2357
Author(s):  
Young Yong Kim ◽  
Kyuyoung Heo ◽  
Kyeong Sik Jin ◽  
Jehan Kim ◽  
Jong Ryang Kim ◽  
...  

2014 ◽  
Vol 47 (20) ◽  
pp. 7221-7229 ◽  
Author(s):  
Mireille Maret ◽  
Raluca Tiron ◽  
Xavier Chevalier ◽  
Patrice Gergaud ◽  
Ahmed Gharbi ◽  
...  

2016 ◽  
Vol 23 (2) ◽  
pp. 519-531 ◽  
Author(s):  
Masafumi Fukuto ◽  
Lin Yang ◽  
Dmytro Nykypanchuk ◽  
Ivan Kuzmenko

The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibility of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.


Nanoscale ◽  
2019 ◽  
Vol 11 (48) ◽  
pp. 23304-23317 ◽  
Author(s):  
Kathrin Sentker ◽  
Arda Yildirim ◽  
Milena Lippmann ◽  
Arne W. Zantop ◽  
Florian Bertram ◽  
...  

X-ray scattering and optical polarimetry evidence in agreement with Monte Carlo computer simulations that confinement-controlled self-assembly of liquid crystals in nanopores allows for designing photonic metamaterials with adaptive birefringence.


Sign in / Sign up

Export Citation Format

Share Document