scholarly journals A Study of the Molecular Lowering of the Freezing-Point of Water Produced by Concentrated Solutions of Electrolytes

1904 ◽  
Vol 18 (3) ◽  
pp. 146-183
Author(s):  
Harry C. Jones ◽  
Frederick H. Getman
1993 ◽  
Vol 34 (2) ◽  
pp. 267-273 ◽  
Author(s):  
M. K. Khripun ◽  
A. Yu. Efimov ◽  
K. Yu. Chervonenko

1906 ◽  
Vol 45 (1) ◽  
pp. 241-259 ◽  
Author(s):  
John Gibson

Although great advances have been made during the last thirty years in our knowledge of dilute solutions, there has been no corresponding advance in respect of concentrated solutions. This is primarily due to the fact that hitherto no simple and general relationship has been discovered between the conductivity and the concentration of concentrated solutions of electrolytes. Ostwald's law of dilution holds only for dilute solutions of weak electrolytes, and the formulæ of Rudolphi and Van T'Hoff are applicable only to dilute solutions of good electrolytes. It seems therefore important to inquire whether the difficulty may not be to some extent overcome by an alteration in the mode of representing the facts.


1954 ◽  
Vol 32 (5) ◽  
pp. 550-556 ◽  
Author(s):  
Paul A. Giguère ◽  
E. A. Secco

The cooling curves of a number of solutions of deuterium peroxide in heavy water in the concentration range 11% to 95% were measured in order to determine the solid-liquid phase diagram for that binary system. The apparatus of Herington and Handley, which uses a pulsing pressure for stirring the solutions, and a thermistor, was found to be particularly suitable for that purpose. As could be expected the freezing-point curve of the deuterated compounds is closely similar to that of the hydrogen compounds, being shifted up only by about 4° for water-rich solutions and by 2° for peroxide-rich solutions. The melting point of the addition compound, D2O.2D2O very nearly coincides with one of the eutectic points at 46.2% D2O2 and −51.5 °C.; the other eutectic point is at 60.5% D2O2 and −55.1 °C. By extrapolation the melting point of pure deuterium peroxide is found to be 1.5 °C. as compared with −0.43 °C. for hydrogen peroxide. Concentrated solutions of deuterium peroxide exhibit an extreme tendency to supercool, resulting sometimes in formation of glasses even at liquid-air temperature. The previous results of Foley and Giguère for the system H2O–H2O2 were confirmed, specially as regards the melting point of the addition compound H2O2•2H2O.


1908 ◽  
Vol 45 (4) ◽  
pp. 855-884 ◽  
Author(s):  
S. M. Johnston

In this paper the results of observations of the elevation of the boiling point of aqueous solutions of electrolytes are given, and a few results of observations of the depression of the freezing point, together with conductivity data obtained by observations of conductivity at about 99·4° and 0° Centigrade.


1996 ◽  
Vol 61 (4) ◽  
pp. 574-588 ◽  
Author(s):  
Oľga Vollárová ◽  
Ján Benko ◽  
Michal Sivák

[Co(en)2SCH2CH2NH2]2+ ion is oxidized to [Co(en)2SOCH2CH2NH2]2+ by the oxo-monoperoxovanadium(V) complexes in aqueous media. These reactions are accompanied by oxygen atom transfer from the peroxo ligand to the coordinated sulfur atom. The relative reactivities for each substrate stand in the order: [VO(O2)(ada)]- << [VO(O2)nta]2- ~ H2O2 ~ [VO(O2)(H2O)4]+ < [VO(O2)(quin)2]3- << [VO(O2)(H2O)2(pic)], where ada = N-(carbamoylmethyl)iminodiacetato(2-), nta = nitrilotriacetato(3-), quin = 2,3-pyridinedicarboxylato(2-) and pic = 2-pyridinecarboxylato(1-) ligands. The effect of pH on the second order rate constant for oxidation by monoperoxo-nta complex is in the pH range 4.8-6.5 consistent with equation k(298.2 K) = 0.709 + 1.28 . 105 [H+]. Two new oxo-monoperoxo complexes of vanadium(V), NH4[VO(O2)(ada)] . H2O and (NH4)3[VO(O2)(quin)2] . 3 H2O, were synthesized and characterized. The salt effects on the thiolatocobalt(III) oxidation by vanadium(V) oxo-monoperoxo complexes as well as by H2O2 were studied at 298.2 K in different, up to 5 M solutions of electrolytes. The results can be rationalized in terms of the salt-water interactions.


Author(s):  
Ying Li ◽  
Yoichi Kanda ◽  
Hiroyuki Shinto ◽  
Ivan Uriev Vakarelski ◽  
Ko Higashitani

Sign in / Sign up

Export Citation Format

Share Document