scholarly journals The Impact of Surface Characteristics of Slightly Soluble Cu (II) and Ni (II) Compounds on their Electroflotation Extraction from Concentrated Solutions of Electrolytes

2021 ◽  
Vol 814 (1) ◽  
pp. 012010
Author(s):  
V A Brodskiy ◽  
Yu O Malkova ◽  
V I Il’yin ◽  
V A Soboleva
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Antonio Copak ◽  
Vlatka Jirouš-Rajković ◽  
Nikola Španić ◽  
Josip Miklečić

Oriented strand board (OSB) is a commonly used structural wood-based panel for walls and roof siding, but recently the industry has become interested in OSB as a substrate for indoor and outdoor furniture. Particleboard is mainly used in furniture productions and has become popular as a construction material due to its numerous usage possibilities and inexpensive cost. Moisture is one of the most important factors affecting wood-based panel performance and the post-treatment conditions affected their affinity to water. When OSB and particleboard are used as substrates for coatings, their surface characteristics play an important role in determining the quality of the final product. Furthermore, roughness can significantly affect the interfacial phenomena such as adsorption, wetting, and adhesion which may have an impact on the coating performance. In this research particleboard and OSB panels were sanded, re-pressed and IR heated and the influence of surface treatments on hardness, roughness, wetting, water, and water vapour absorption was studied. Results showed that sanding improved the wetting of particleboard and OSB with water. Moreover, studied surface treatments increased water absorption and water penetration depth of OSB panels, and re-pressing had a positive effect on reducing the water vapour absorption of particleboard and OSB panels.


2007 ◽  
Vol 8 (3) ◽  
pp. 439-446 ◽  
Author(s):  
Dagang Wang ◽  
Guiling Wang

Abstract Representation of the canopy hydrological processes has been challenging in land surface modeling due to the subgrid heterogeneity in both precipitation and surface characteristics. The Shuttleworth dynamic–statistical method is widely used to represent the impact of the precipitation subgrid variability on canopy hydrological processes but shows unwanted sensitivity to temporal resolution when implemented into land surface models. This paper presents a canopy hydrology scheme that is robust at different temporal resolutions. This scheme is devised by applying two physically based treatments to the Shuttleworth scheme: 1) the canopy hydrological processes within the rain-covered area are treated separately from those within the nonrain area, and the scheme tracks the relative rain location between adjacent time steps; and 2) within the rain-covered area, the canopy interception is so determined as to sustain the potential evaporation from the wetted canopy or is equal to precipitation, whichever is less, to maintain somewhat wet canopy during any rainy time step. When applied to the Amazon region, the new scheme establishes interception loss ratios of 0.3 at a 10-min time step and 0.23 at a 2-h time step. Compared to interception loss ratios of 0.45 and 0.09 at the corresponding time steps established by the original Shuttleworth scheme, the new scheme is much more stable under different temporal resolutions.


Author(s):  
M. K. Firozjaei ◽  
M. Makki ◽  
J. Lentschke ◽  
M. Kiavarz ◽  
S. K. Alavipanah

Abstract. Spatiotemporal mapping and modeling of Land Surface Temperature (LST) variations and characterization of parameters affecting these variations are of great importance in various environmental studies. The aim of this study is a spatiotemporal modeling the impact of surface characteristics variations on LST variations for the studied area in Samalghan Valley. For this purpose, a set of satellite imagery and meteorological data measured at the synoptic station during 1988–2018, were used. First, single-channel algorithm, Tasseled Cap Transformation (TCT) and Biophysical Composition Index (BCI) were employed to estimate LST and surface biophysical parameters including brightness, greenness and wetness and BCI. Also, spatial modeling was used to modeling of terrain parameters including slope, aspect and local incident angle based on DEM. Finally, the principal component analysis (PCA) and the Partial Least Squares Regression (PLSR) were used to modeling and investigate the impact of surface characteristics variations on LST variations. The results indicated that surface characteristics vary significantly for case study in spatial and temporal dimensions. The correlation coefficient between the PC1 of LST and PC1s of brightness, greenness, wetness, BCI, DEM, and solar local incident angle were 0.65, −0.67, −0.56, 0.72, −0.43 and 0.53, respectively. Furthermore, the coefficient coefficient and RMSE between the observed LST variation and modelled LST variation based on PC1s of brightness, greenness, wetness, BCI, DEM, and local incident angle were 0.83 and 0.14, respectively. The results of study indicated the LST variation is a function of s terrain and surface biophysical parameters variations.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 369 ◽  
Author(s):  
Semin Ryu ◽  
Seung-Chan Kim

Inspired by spiders that can generate and sense vibrations to obtain information regarding a substrate, we propose an intelligent system that can recognize the type of surface being touched by knocking the surface and listening to the vibrations. Hence, we developed a system that is equipped with an electromagnetic hammer for hitting the ground and an accelerometer for measuring the mechanical responses induced by the impact. We investigate the feasibility of sensing 10 different daily surfaces through various machine-learning techniques including recent deep-learning approaches. Although some test surfaces are similar, experimental results show that our system can recognize 10 different surfaces remarkably well (test accuracy of 98.66%). In addition, our results without directly hitting the surface (internal impact) exhibited considerably high test accuracy (97.51%). Finally, we conclude this paper with the limitations and future directions of the study.


2009 ◽  
Vol 55 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Odile Tresse ◽  
Véronique Lebret ◽  
Dominique Garmyn ◽  
Olivier Dussurget

The contribution of growth history and flagella to adhesion of Listeria monocytogenes was analysed. An in-frame deletion on the flagellin encoding gene (flaA) was performed in L. monocytogenes EGD-e to compare its adhesion ability with the parental strain, after cultivation at various pH values and temperatures. The pH, as well as the temperature, affected the adhesion of L. monocytogenes EGD-e. In addition, the adhesion of L. monocytogenes EGD-e was reduced in energy-depressed cells. Conversely, the physicochemical bacterial surface characteristics affected by growth history did not influence the adhesion. Adhesion variations observed among environmental and clinical strains was attributed to the flagella. The naturally aflagellated strains resulted in an adhesion capacity similar to that observed for mutants and parental strains cultivated under flagellum expression repressing conditions. However, L. monocytogenes is able to adhere to inert surfaces through a residual adhesion process without flagella. All these observations emphasize the importance to consider the food environmental factors in the risk assessment of L. monocytogenes in food industry.


2019 ◽  
Vol 252 ◽  
pp. 03020 ◽  
Author(s):  
Emilia Bachtiak-Radka ◽  
Sara Dudzińska ◽  
Daniel Grochała ◽  
Stefan Berczyński

Digital processing of the recorded point clouds on innovative surfaces could facilitate the operator’s planning of the metrological process and give more freedom in the assessment of the surface texture. The current state of knowledge about surface characteristics, precision and quality of measurements and especially the repeatability of measurements – not only in the laboratory environment but also in the industry pose a big challenge. The paper presents research works related to the identification of the impact of the method of acquisition point clouds using digital data processing on surface texture. The main assumption of the paper was to carry out, according to the prepared plan of the experiment, the series of sample measurements with the use of the optical measuring systems AltiSurf A520 in the Laboratory of Surface Topography at the West Pomeranian University of Technology in Szczecin. The next task was to determine the impact of the digital data processing strategy in order to identify the significance of the impact (conditions and methods of filtration), which in practice largely determines the repeatability and reproducibility of the parameter values of the geometry surface structure.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Shelly J. Olin ◽  
David A. Bemis ◽  
John R. Dunlap ◽  
Jacqueline C. Whittemore

Fungal colonization of feeding tubes occurs rapidly in people, resulting in decreased structural integrity and complications such as luminal obstruction and tube failure. Esophagostomy tubes (E-tubes) are commonly used in dogs and cats for enteral support, but data are lacking regarding colonizing fungi and the impact of colonization on tube integrity. In this study, esophagostomy tubes were collected in lieu of disposal from dogs and cats undergoing feeding tube exchange. Fungi were isolated with culture and identified using morphological characteristics. Scanning electron microscopy was used to evaluate the surface characteristics of the tubes. Two silicone and one polyurethane E-tube were evaluated. Fungi associated with the normal microbiota, including Candida sp. and Penicillium sp., as well as environmental fungi were identified. This case series represents the first documentation of fungal colonization of silicone and polyurethane E-tubes in dogs and cats. Additionally, this is the first report to document degenerative changes in a silicone E-tube.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3030
Author(s):  
Vinayak Fasake ◽  
Kavya Dashora

The modern-day paper industry is highly capital-intensive industries in the core sector. Though there are several uses of paper for currency, packaging, education, information, communication, trade and hygiene, the flip side of this industry is the impact on the forest resources and other ecosystems which leads to increasing pollution in water and air, influencing several local communities. In the present paper, the authors have tried to explore potential and alternate source of industrial pulp through ruminant animal dung, which is widely available as a rural resource in India. Three types of undigested animal dung fibers from Indigenous cow (IDF), Jersey cow (JDF), and Buffalo (BDF) were taken. Wheat straw (WS) was the main diet of all animals. The cellulose, hemicellulose and lignin content for all animal dung samples were found in a range of (29–31.50%), (21–23.50%), and (11–13%), respectively. The abundant holocellulose and low lignin contents are suitable for handmade pulp and paper. Surface characteristics of fodder (WS) and all dung fibers have been investigated using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and SEM-Energy dispersive X-ray spectroscopy (SEM-EDX). To increase paper production without damaging forest cover, it is essential to explore unconventional natural resources, such as dung fiber, which have the huge potential to produce pulp and paper, reinforcement components, etc.


Sign in / Sign up

Export Citation Format

Share Document