scholarly journals The Regulation of Rubisco Activity in Response to Variation in Temperature and Atmospheric CO2 Partial Pressure in Sweet Potato

2005 ◽  
Vol 139 (2) ◽  
pp. 979-990 ◽  
Author(s):  
Yan-Ping Cen ◽  
Rowan F. Sage
1996 ◽  
Vol 23 (5) ◽  
pp. 623 ◽  
Author(s):  
KP Hogan ◽  
D Whitehead ◽  
J Kallarackal ◽  
JG Buwalda ◽  
J Meekings ◽  
...  

Radiata pine (Pinus radiata D.Don) and red beech (Nothofagus fusca (Hook. f.) Oerst.) were grown for over 1 year at elevated (ELEV, 64 Pa) and ambient (AMB, 38 Pa) CO2 partial pressure in open-top chambers. Springtime measurements of overwintering leaves showed that light- and CO2-saturated photosynthetic rates (Amax) of pine leaves were similar for the two treatments (AMB: 6.7 � 1.08 μmol m-2 s-1, mean � 1 s.e.; ELEV: 6.6 � 0.47) but, for beech leaves, Amax was greater for AMB plants (8.8 � 0.90 μmol m-2 s-1) than for ELEV plants (6.10 � 0.71). Summertime measurements of leaves grown that spring showed that for pine, Amax was similar in the two CO2 treatments (AMB 14.9 μmol m-2 s-1 � 0.80; ELEV: 13.5 � 1.9) while, for beech, Amax was higher in AMB plants (21.0 � 1.1) than in ELEV plants (17.2 � 1.9), although the difference was not statistically significant. These results indicate downregulation of photosynthetic capacity of beech but not pine. Vcmax did not differ between treatments within species, suggesting that there was no acclimation of rubisco activity. Triose phosphate utilisation limitation may have contributed to the downregulation of Amax in beech. For pine, photosynthesis at treatment CO2 partial pressures was greater in ELEV plants in both spring and summer. For beech measured at treatment CO2 partial pressures, photosynthesis was greater in ELEV plants in summer, but was similar between treatments in the springtime.


2012 ◽  
Vol 9 (3) ◽  
pp. 2273-2326 ◽  
Author(s):  
C. Rödenbeck ◽  
R. F. Keeling ◽  
D. C. E. Bakker ◽  
N. Metzl ◽  
A. Olsen ◽  
...  

Abstract. Surface-ocean CO2 partial pressure data have been assimilated into a simple diagnostic model of surface-ocean biogeochemistry to estimate the spatio-temporal CO2 partial pressure field and ultimately the sea-air CO2 fluxes. Results compare well with the widely used monthly climatology by Takahashi et al. (2009) but also contain some short-term and interannual variations. Fitting the same model to atmospheric CO2 data yields less robust but consistent estimates, confirming that using the partial pressure based estimates as ocean prior in atmospheric CO2 inversions may improve land CO2 flux estimates. Estimated seasonality of ocean-internal carbon sources and sinks is discussed in the light of observed nutrient variations.


1982 ◽  
Vol 242 (3) ◽  
pp. C200-C206 ◽  
Author(s):  
E. Mulligan ◽  
S. Lahiri

The cat carotid chemoreceptor O2 and CO2 responses can be separated by oligomycin and by antimycin A. Both of these agents greatly diminish or abolish the chemoreceptor O2 response but not the nicotine or CO2 responses. After either oligomycin or antimycin, the responses to increases and decreases in arterial CO2 partial pressure (PaCO2) consisted of increases and decreases in activity characterized respectively by exaggerated overshoots and undershoots. These were eliminated by the carbonic anhydrase inhibitor, acetazolamide, suggesting that they resulted from changes in carotid body tissue pH. The steady-state PaCO2 response remaining after oligomycin was no longer dependent on arterial O2 partial pressure (PaO2). All effects of antimycin were readily reversible in about 20 min. The separation of the responses to O2 and CO2 indicates that there may be at least partially separate pathways of chemoreception for these two stimuli. The similarity of the oligomycin and antimycin results supports the metabolic hypothesis of chemoreception.


2013 ◽  
Vol 504 ◽  
pp. 40-56 ◽  
Author(s):  
Siyue Li ◽  
X.X. Lu ◽  
Richard T. Bush

Sign in / Sign up

Export Citation Format

Share Document