scholarly journals Cell Expansion and Endoreduplication Show a Large Genetic Variability in Pericarp and Contribute Strongly to Tomato Fruit Growth

2005 ◽  
Vol 139 (4) ◽  
pp. 1984-1994 ◽  
Author(s):  
Catherine Cheniclet ◽  
Wen Ying Rong ◽  
Mathilde Causse ◽  
Nathalie Frangne ◽  
Laurence Bolling ◽  
...  
2012 ◽  
Vol 137 (5) ◽  
pp. 294-301 ◽  
Author(s):  
Julienne Fanwoua ◽  
Pieter de Visser ◽  
Ep Heuvelink ◽  
Gerco Angenent ◽  
Xinyou Yin ◽  
...  

To improve our understanding of fruit growth responses to temperature, it is important to analyze temperature effects on underlying fruit cellular processes. This study aimed at analyzing the response of tomato (Solanum lycopersicum) fruit size to heating as affected by changes in cell number and cell expansion in different directions. Individual trusses were enclosed into cuvettes and heating was applied either only during the first 7 days after anthesis (DAA), from 7 DAA until fruit maturity (breaker stage), or both. Fruit size and histological characteristics in the pericarp were measured. Heating fruit shortened fruit growth period and reduced final fruit size. Reduction in final fruit size of early-heated fruit was mainly associated with reduction in final pericarp cell volume. Early heating increased the number of cell layers in the pericarp but did not affect the total number of pericarp cells. These results indicate that in the tomato pericarp, periclinal cell divisions respond differently to temperature than anticlinal or randomly oriented cell divisions. Late heating only decreased pericarp thickness significantly. Continuously heating fruit reduced anticlinal cell expansion (direction perpendicular to fruit skin) more than periclinal cell expansion (direction parallel to fruit skin). This study emphasizes the need to measure cell expansion in more than one dimension in histological studies of fruit.


2016 ◽  
Vol 7 ◽  
Author(s):  
Dario Constantinescu ◽  
Mohamed-Mahmoud Memmah ◽  
Gilles Vercambre ◽  
Michel Génard ◽  
Valentina Baldazzi ◽  
...  

Author(s):  
Dien Thi Kieu Pham ◽  
Kiet Thuong Do ◽  
Sanh Du Nguyen

The cherry tomato fruit size depends on the growth of the pericarp which is parenchymal cells. The blue light stimulates the expansion of cotyledon cells, hypocotyl cells and leaf cells. In this study, the cherry tomato fruit was used as a material to investigate the effects of the blue light on the pericarp cells growth in fruit growth stage and lycopene accumulation in fruit growth and ripening stage. After 7 days of the blue light (440, 450 or 460 nm) treatment, pericarp cells growth and physiological, biochemical changes of the pericarp cells of 7-day-old fruit pericarp piece in vitro were analyzed. The lycopene content and some organic compound contents of 42-day-old postharvest fruits treated by the blue light similarly in 7 days and 7, 21-day-old fruit wrapped with blue filter (440-510 nm filtered) in 7 days were measured. The results showed that the 450 nm wavelength blue light the increased pericarp thickness of 7-day-old fruits through the increasement of the pericarp cell diameter. The 460 nm wavelength blue light the increased lycopene content of 42-day-old postharvest fruits. The blue filter treatment increased the sugar total content of 7- day-old fruits and increased the lycopene content of 21-day-old fruits.


2019 ◽  
Vol 181 (3) ◽  
pp. 976-992 ◽  
Author(s):  
Liang-Yu Hou ◽  
Matthias Ehrlich ◽  
Ina Thormählen ◽  
Martin Lehmann ◽  
Ina Krahnert ◽  
...  

2019 ◽  
Vol 116 (50) ◽  
pp. 25333-25342 ◽  
Author(s):  
Juan-José Ripoll ◽  
Mingyuan Zhu ◽  
Stephanie Brocke ◽  
Cindy T. Hon ◽  
Martin F. Yanofsky ◽  
...  

Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis. We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.


Plant Science ◽  
2001 ◽  
Vol 160 (6) ◽  
pp. 1153-1159 ◽  
Author(s):  
Maria C Bolarin ◽  
Maria T Estañ ◽  
Manuel Caro ◽  
Remedios Romero-Aranda ◽  
Jesus Cuartero

Sign in / Sign up

Export Citation Format

Share Document