scholarly journals Protein Tyrosine Kinases and Protein Tyrosine Phosphatases Are Involved in Abscisic Acid-Dependent Processes in Arabidopsis Seeds and Suspension Cells

2008 ◽  
Vol 148 (3) ◽  
pp. 1668-1680 ◽  
Author(s):  
Thanos Ghelis ◽  
Gérard Bolbach ◽  
Gilles Clodic ◽  
Yvette Habricot ◽  
Emile Miginiac ◽  
...  
2005 ◽  
Vol 185 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Andrew W Stoker

A cornerstone of many cell-signalling events rests on reversible phosphorylation of tyrosine residues on proteins. The reversibility relies on the coordinated actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), both of which exist as large protein families. This review focuses on the rapidly evolving field of the PTPs. We now know that rather than simply scavenging phosphotyrosine, the PTPs specifically regulate a wide range of signalling pathways. To illustrate this and to highlight current areas of agreement and contention in the field, this review will present our understanding of PTP action in selected areas and will present current knowledge surrounding the regulatory mechanisms that control PTP enzymes themselves. It will be seen that PTPs control diverse processes such as focal adhesion dynamics, cell–cell adhesion and insulin signalling, and their own actions are in turn regulated by dimerisation, phosphorylation and reversible oxidation.


1996 ◽  
Vol 271 (16) ◽  
pp. 9441-9446 ◽  
Author(s):  
Mauro Cataldi ◽  
Maurizio Taglialatela ◽  
Salvatore Guerriero ◽  
Salvatore Amoroso ◽  
Gaetano Lombardi ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 12865
Author(s):  
Vignesh Sivaganesh ◽  
Varsha Sivaganesh ◽  
Christina Scanlon ◽  
Alexander Iskander ◽  
Salma Maher ◽  
...  

Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic. This review will highlight key protein tyrosine phosphatases that have been thoroughly investigated in various cancers. Furthermore, the different mechanisms underlying pro-cancerous and anti-cancerous PTPs will also be explored.


Author(s):  
Aaron D. Krabill ◽  
Zhong-Yin Zhang

Protein tyrosine phosphatases (PTPs) counteract the enzymatic activity of protein tyrosine kinases to modulate levels of both normal and disease-associated protein tyrosine phosphorylation. Aberrant activity of PTPs has been linked to the progression of many disease states, yet no PTP inhibitors are currently clinically available. PTPs are without a doubt a difficult drug target. Despite this, many selective, potent, and bioavailable PTP inhibitors have been described, suggesting PTPs should once again be looked at as viable therapeutic targets. Herein, we summarize recently discovered PTP inhibitors and their use in the functional interrogation of PTPs in disease states. In addition, an overview of the therapeutic targeting of PTPs is described using SHP2 as a representative target.


1999 ◽  
Vol 77 (6) ◽  
pp. 493-505 ◽  
Author(s):  
Alexandre Angers-Loustau ◽  
Jean-François Côté ◽  
Michel L Tremblay

Signal transduction pathways are often seen as cascades of kinases, whereas phosphatases are relinquished to the housekeeping function of resetting the individual elements to a resting state. However, critical biological processes such as cellular migration require a coordinated and constant remodeling of the actin cytoskeleton as well as a rapid turnover of the cell-substratum linkages that necessitate the concomitant action of antagonistic enzymes. Tyrosine phosphorylation was long known to be involved in adhesion and de-adhesion mediated via the integrin receptors. As the roles of tyrosine kinases such as focal adhesion kinase, c-Src, and Csk in this pathway are being extensively studied, increasing evidence is emerging about the importance of protein tyrosine phosphatases (PTP). In this review we discuss examples of PTPs that were recently shown to play a role in cell adhesion and migration and their mechanism of action.Key words: protein tyrosine phosphatases (PTP), migration, adhesion, FAK, p130Cas, Src.


1992 ◽  
Vol 12 (5) ◽  
pp. 2396-2405
Author(s):  
R J Matthews ◽  
D B Bowne ◽  
E Flores ◽  
M L Thomas

Protein tyrosine phosphatases (PTPases) are a family of enzymes important in cellular regulation. Characterization of two cDNAs encoding intracellular PTPases expressed primarily in hematopoietic tissues and cell lines has revealed proteins that are potential regulators of signal transduction. One of these, SHP (Src homology region 2 [SH2]-domain phosphatase), possesses two tandem SH2 domains at the amino terminus of the molecule. SH2 domains have previously been described in proteins implicated in signal transduction, and SHP may be one of a family of nonreceptor PTPases that can act as direct antagonists to the nonreceptor protein tyrosine kinases. The SH2 domains of SHP preferentially bind a 15,000-Mr protein expressed by LSTRA cells. LSTRA cells were shown to express SHP protein by immunoprecipitation, thus demonstrating a potential physiological interaction. The other PTPase, PEP (proline-, glutamic acid-, serine-, and threonine-rich [PEST]-domain phosphatase), is distinguished by virtue of a large carboxy-terminal domain of approximately 500 amino acids that is rich in PEST residues. PEST sequences are found in proteins that are rapidly degraded. Both proteins have been expressed by in vitro transcription and translation and in bacterial expression systems, and both have been demonstrated to have PTPase activity. These two additional members of the PTPase family accentuate the variety of PTPase structures and indicate the potential diversity of function for intracellular tyrosine phosphatases.


Sign in / Sign up

Export Citation Format

Share Document