scholarly journals Sex Determination in Dioecious Silene Iatifolia (Effects of the Y Chromosome and the Parasitic Smut Fungus (Ustilago violacea) on Gene Expression during Flower Development)

1997 ◽  
Vol 114 (3) ◽  
pp. 969-979 ◽  
Author(s):  
C. P. Scutt ◽  
Y. Li ◽  
S. E. Robertson ◽  
M. E. Willis ◽  
P. M. Gilmartin
2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Brennan Hyden ◽  
Craig H. Carlson ◽  
Fred E. Gouker ◽  
Jeremy Schmutz ◽  
Kerrie Barry ◽  
...  

AbstractSex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.


2020 ◽  
Vol 110 ◽  
pp. 101459
Author(s):  
Lihong Hao ◽  
Jing Liu ◽  
Aiying Zhang ◽  
Yansha Han ◽  
Erhu Guo ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Xingyong Liu ◽  
Shengfei Dai ◽  
Jiahong Wu ◽  
Xueyan Wei ◽  
Xin Zhou ◽  
...  

Abstract Duplicates of amh are crucial for fish sex determination and differentiation. In Nile tilapia, unlike in other teleosts, amh is located on X chromosome. The Y chromosome amh (amh△-y) is mutated with 5 bp insertion and 233 bp deletion in the coding sequence, and tandem duplicate of amh on Y chromosome (amhy) has been identified as the sex determiner. However, the expression of amh, amh△-y and amhy, their roles in germ cell proliferation and the molecular mechanism of how amhy determines sex is still unclear. In this study, expression and functions of each duplicate were analyzed. Sex reversal occurred only when amhy was mutated as revealed by single, double and triple mutation of the three duplicates in XY fish. Homozygous mutation of amhy in YY fish also resulted in sex reversal. Earlier and higher expression of amhy/Amhy was observed in XY gonads compared with amh/Amh during sex determination. Amhy could inhibit the transcription of cyp19a1a through Amhr2/Smads signaling. Loss of cyp19a1a rescued the sex reversal phenotype in XY fish with amhy mutation. Interestingly, mutation of both amh and amhy in XY fish or homozygous mutation of amhy in YY fish resulted in infertile females with significantly increased germ cell proliferation. Taken together, these results indicated that up-regulation of amhy during the critical period of sex determination makes it the sex-determining gene, and it functions through repressing cyp19a1a expression via Amhr2/Smads signaling pathway. Amh retained its function in controlling germ cell proliferation as reported in other teleosts, while amh△-y was nonfunctionalized.


2018 ◽  
Author(s):  
Αλέξανδρος Τσακογιάννης

The differences between sexes and the concept of sex determination have always fascinated, yet troubled philosophers and scientists. Among the animals that reproduce sexually, teleost fishes show a very wide repertoire of reproductive modes. Except for the gonochoristic species, fish are the only vertebrates in which hermaphroditism appears naturally. Hermaphroditism refers to the capability of an organism to reproduce both as male and female in its life cycle and there are various forms of it. In sequential hermaphroditism, an individual begins as female first and then can change sex to become male (protogyny), or vice versa (protandry). The diverse sex-phenotypes of fish are regulated by a variety of sex determination mechanisms, along a continuum of environmental and heritable factors. The vast majority of sexually dimorphic traits result from the differential expression of genes that are present in both sexes. To date, studies regarding the sex-specific differences in gene expression have been conducted mainly in sex determination systems of model fish species that are well characterized at the genomic level, with distinguishable heteromorphic sex chromosomes, exhibiting genetic sex determination and gonochorism. Among teleosts, the Sparidae family is considered to be one of the most diversified families regarding its reproductive systems, and thus is a unique model for comparative studies to understand the molecular mechanisms underlying different sexual motifs. In this study, using RNA sequencing, we studied the transcriptome from gonads and brains of both sexes in five sparid species, representatives of four different reproductive styles. Specifically, we explored the sex-specific expression patterns of a gonochoristic species: the common dentex Dentex dentex, two protogynous hermaphrodites: the red porgy Pagrus pagrus and the common pandora Pagellus erythrinus, the rudimentary hermaphrodite sharpsnout seabream Diplodus puntazzo, and the protandrous gilthead seabream Sparus aurata. We found minor sex-related expression differences indicating a more homogeneous and sexually plastic brain, whereas there was a plethora of sex biased gene expression in the gonads. The functional divergence of the two gonadal types is reflected in their transcriptomic profiles, in terms of the number of genes differentially expressed, as well as the expression magnitude (i.e. fold-change differences). The observation of almost double the number of up-regulated genes in males compared to females indicates a male-biased expression tendency. Focusing on the pathways and genes implicated in sex determination/differentiation, we aimed to unveil the molecular pathways through which these non-model fish species develop a masculine or a feminine character. We observed the implicated pathways and major gene families (e.g. Wnt/b-catenin pathway and Retinoic-acid signaling pathway, Notch, TGFβ) behind sex-biased expression and the recruitment of known sex-related genes either to male or female type of gonads in these fish. (e.g Dmrt1, Sox9, Sox3, Cyp19a, Filgla, Ctnnb1, Gsdf9, Stra6 etc.). We also carefully investigated the presence of genes reported to be involved in sex determination/differentiation mechanisms in other vertebrates and fish and compared their expression patterns in the species under study. The expression profiling exposed known candidate molecular-players/genes establishing the common female (Cyp19a1, Sox3, Figla, Gdf9, Cyp26a, Ctnnb1, Dnmt1, Stra6) and male identity (Dmrt1, Sox9, Dnmt3aa, Rarb, Raraa, Hdac8, Tdrd7) of the gonad in these sparids. Additionally, we focused on those contributing to a species-specific manner either to female (Wnt4a, Dmrt2a, Foxl2 etc.) or to male (Amh, Dmrt3a, Cyp11b etc.) characters, and discussed the expression patterns of factors that belong to important pathways and/or gene families in the SD context, in our species gonadal transcriptomes. Taken together, most of the studied genes form part of the cascade of sex determination, differentiation, and reproduction across teleosts. In this study, we focused on genes that are active when sex is established (sex-maintainers), revealing the basic “gene-toolkit” & gene-networks underlying functional sex in these five sparids. Comparing related species with alternative reproductive styles, we saw different combinations of genes with conserved sex-linked roles and some “handy” molecular players, in a “partially- conserved” or “modulated” network formulating the male and female phenotype. The knowledge obtained in this study and tools developed during the process have set the groundwork for future experiments that can improve the sex control of this species and help the in-deep understanding the complex process of sex differentiation in the more flexible multi-component systems as these studied here.


1972 ◽  
Vol 14 (1) ◽  
pp. 175-180 ◽  
Author(s):  
D. N. Singh

A dioecious grass Sohnsia filifolia (Fourn.) Airy Shaw (Syn. Calamochloa filifolia Fourn.) from Mexico has been found to have 2n = 20 chromosomes in both male and female plants. The staminate plants have one chromosome much longer than the other chromosomes of the complement. One pistillate plant was found to have 30 chromosomes, among which the largest chromosome is quite similar to the largest component of the diploid male plant. The longest chromosome has been designated as the Y chromosome. An XY-mechanism of the Drosophilia type has been suggested for the sex determination system in this species. One small supernumerary chromosome was observed in the microsporocytes of some male plants, but was absent in roots.


2010 ◽  
pp. P1-304-P1-304
Author(s):  
B Bianco ◽  
MVN Lipay ◽  
KC Oliveira ◽  
AD Guedes ◽  
ITN Verreschi

Sign in / Sign up

Export Citation Format

Share Document