scholarly journals Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development

2015 ◽  
Vol 170 (2) ◽  
pp. 935-946 ◽  
Author(s):  
Patricia Segado ◽  
Eva Domínguez ◽  
Antonio Heredia
1998 ◽  
Vol 21 (6) ◽  
pp. 589-599 ◽  
Author(s):  
D. S. Thompson ◽  
W. J. Davies ◽  
L. C. Ho

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eri Nakamura ◽  
Noriaki Ozaki ◽  
Yuya Oaki ◽  
Hiroaki Imai

AbstractThe essence of morphological design has been a fascinating scientific problem with regard to understanding biological mineralization. Particularly shaped amorphous silicas (plant opals) play an important role in the vital activity in rice plants. Although various organic matters are associated with silica accumulation, their detailed functions in the shape-controlled mineralization process have not been sufficiently clarified. In the present study, cellulose nanofibers (CNFs) were found to be essential as a scaffold for silica accumulation in rice husks and leaf blades. Prior to silicification, CNFs ~ 10 nm wide are sparsely stacked in a space between the epidermal cell wall and the cuticle layer. Silica nanoparticles 20–50 nm in diameter are then deposited in the framework of the CNFs. The shape-controlled plant opals are formed through the intrafibrillar mineralization of silica nanoparticles on the CNF scaffold.


Author(s):  
Fufa Desta Dugassa

Tomato (Solanum Lycopersicum L. (or) Lycopersicon esculentum Mill.) is being a very nutritious and health protective food, are highly perishable nature. Its sensitivity to postharvest loss due to poor handling, diseases and physical injury limits its successful marketing. Therefore, simple technology is required to reduce the postharvest loss of this commodity. The use of edible coatings with bio-extracts appears to be a good alternative preservation technique to extend the mature tomato fruits. This study was, therefore, initiated to investigate the effect of using bio- extracts garlic bulba and capsicum incorporation with coating materials (maize starch and beeswax on physicochemical quality of tomato fruit stored at ambient conditions (temperature 15.5 to 20.2oC and relative humidity of 55.5 to 67.3%). The experiment was conducted using complete randomized design of two varieties (Fetane and Melkashola) and six treatments. The tomato fruits were coated by dipping into solution for 3 minutes. The treatments prepared were on coating solution of MGE( 9.5% maize starch with 0.5% garlic extract), MCE (9.5% maize starch with 0.5% capsicum extract), BCE (9.5% beewax mixed with 0.5% capsicum extract), BGE (9.5% beewax mixed with 0.5% garlic extract), 10% maize starch without bio-extract, 10% beewax without bio- extract and control. The treatment means were tested at significance level of P ≤ 0.05. The effectiveness of bio-extracts with coating materials on physicochemical quality of tomato fruits were evaluated at three days intervals for 30 days. There was a significance difference (P<0.05) between coated and uncoated fruits. All coatings delayed tomato ripening and improved the keeping quality parameters but best results were exhibited by 9.5% with 0.5% BCE followed by 9.5% with 0.5% MGE by maintaining the mature tomato fruit for 30 days. The study showed that the Fetane variety has maintained more quality attribute than Melkashola variety during storage.


2021 ◽  
Vol 159 ◽  
pp. 89-99
Author(s):  
Christoph H. Weinert ◽  
Frederike Sonntag ◽  
Björn Egert ◽  
Elke Pawelzik ◽  
Sabine E. Kulling ◽  
...  

1987 ◽  
Vol 17 (8) ◽  
pp. 846-854 ◽  
Author(s):  
H. B. Massicotte ◽  
C. A. Ackerley ◽  
R. L. Peterson

Seedlings of Alnuscrispa (Ait.) Pursh, Alnusrubra Bong., Eucalyptuspilularis Sm., and Betulaalleghaniensis Britt. were grown in plastic pouches and subsequently inoculated with Alpovadiplophloeus (Zeller & Dodge) Trappe & Smith (two different strains), Pisolithustinctorius (Pers.) Coker & Couch, and Laccariabicolor (R. Mre) Orton, respectively, to form ectomycorrhizae insitu. Alnus seedlings were inoculated with Frankia prior to inoculation with the mycosymbiont. The interface established between A. crispa and A. diplophloeus was complex, involving wall ingrowth formation in root epidermal cells and infoldings in Hartig net hyphae. Alnusrubra – A. diplophloeus ectomycorrhizae had an interface lacking epidermal cell wall ingrowths but with infoldings in Hartig net hyphae. The interface between E. pilularis –. tinctorius consisted of branching Hartig net hyphae between radially enlarged epidermal cells lacking wall ingrowths. Ectomycorrhizae between B. alleghaniensis and L. bicolor developed unique interfaces with radially enlarged epidermal cells near the apical meristem, which synthesized dense vacuolar deposits. Very fine branchings occurred in Hartig net hyphae.


2016 ◽  
Vol 143 ◽  
pp. 254-264 ◽  
Author(s):  
Yu Lu ◽  
Shigetaka Yasuda ◽  
Xingwen Li ◽  
Yoichiro Fukao ◽  
Takayuki Tohge ◽  
...  

2012 ◽  
pp. 395-401 ◽  
Author(s):  
K. Kowalczyk ◽  
J. Gajc-Wolska ◽  
A. Metera ◽  
K. Mazur ◽  
J. Radzanowska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document