scholarly journals Rubber Biosynthesis in Latex of Hevea brasiliensis.

1957 ◽  
Vol 32 (6) ◽  
pp. 643-648 ◽  
Author(s):  
Robert S. Bandurski ◽  
Howard J. Teas
Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 674
Author(s):  
Tomoko Yamaguchi ◽  
Yukio Kurihara ◽  
Yuko Makita ◽  
Emiko Okubo-Kurihara ◽  
Ami Kageyama ◽  
...  

Natural rubber is the main component of latex obtained from laticifer cells of Hevea brasiliensis. For improving rubber yield, it is essential to understand the genetic molecular mechanisms responsible for laticifer differentiation and rubber biosynthesis. Jasmonate enhances both secondary laticifer differentiation and rubber biosynthesis. Here, we carried out time-course RNA-seq analysis in suspension-cultured cells treated with methyljasmonic acid (MeJA) to characterize the gene expression profile. Gene Ontology (GO) analysis showed that the term “cell differentiation” was enriched in upregulated genes at 24 h after treatment, but inversely, the term was enriched in downregulated genes at 5 days, indicating that MeJA could induce cell differentiation at an early stage of the response. Jasmonate signaling is activated by MYC2, a basic helix–loop–helix (bHLH)-type transcription factor (TF). The aim of this work was to find any links between transcriptomic changes after MeJA application and regulation by TFs. Using an in vitro binding assay, we traced candidate genes throughout the whole genome that were targeted by four bHLH TFs: Hb_MYC2-1, Hb_MYC2-2, Hb_bHLH1, and Hb_bHLH2. The latter two are highly expressed in laticifer cells. Their physical binding sites were found in the promoter regions of a variety of other TF genes, which are differentially expressed upon MeJA exposure, and rubber biogenesis-related genes including SRPP1 and REF3. These studies suggest the possibilities that Hb_MYC2-1 and Hb_MYC2-2 regulate cell differentiation and that Hb_bHLH1 and Hb_bHLH2 promote rubber biosynthesis. We expect that our findings will help to increase natural rubber yield through genetic control in the future.


1996 ◽  
Vol 41 (6) ◽  
pp. 1501-1505 ◽  
Author(s):  
Yasuyuki Tanaka ◽  
Eng Aik-Hwee ◽  
Norimasa Ohya ◽  
Naoyuki Nishiyama ◽  
Jitladda Tangpakdee ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4220
Author(s):  
Shuangyang Wu ◽  
Romain Guyot ◽  
Stéphanie Bocs ◽  
Gaëtan Droc ◽  
Fetrina Oktavia ◽  
...  

The natural rubber biosynthetic pathway is well described in Hevea, although the final stages of rubber elongation are still poorly understood. Small Rubber Particle Proteins and Rubber Elongation Factors (SRPPs and REFs) are proteins with major function in rubber particle formation and stabilization. Their corresponding genes are clustered on a scaffold1222 of the reference genomic sequence of the Hevea brasiliensis genome. Apart from gene expression by transcriptomic analyses, to date, no deep analyses have been carried out for the genomic environment of SRPPs and REFs loci. By integrative analyses on transposable element annotation, small RNAs production and gene expression, we analysed their role in the control of the transcription of rubber biosynthetic genes. The first in-depth annotation of TEs (Transposable Elements) and their capacity to produce TE-derived siRNAs (small interfering RNAs) is presented, only possible in the Hevea brasiliensis clone PB 260 for which all data are available. We observed that 11% of genes are located near TEs and their presence may interfere in their transcription at both genetic and epigenetic level. We hypothesized that the genomic environment of rubber biosynthesis genes has been shaped by TE and TE-derived siRNAs with possible transcriptional interference on their gene expression. We discussed possible functionalization of TEs as enhancers and as donors of alternative transcription start sites in promoter sequences, possibly through the modelling of genetic and epigenetic landscapes.


Author(s):  
Keng-See Chow ◽  
Azlina Bahari ◽  
Mark A. Taylor ◽  
David F. Marshall

2007 ◽  
Vol 58 (10) ◽  
pp. 2429-2440 ◽  
Author(s):  
K.-S. Chow ◽  
K.-L. Wan ◽  
Mohd. N. M. Isa ◽  
A. Bahari ◽  
S.-H. Tan ◽  
...  

2019 ◽  
Author(s):  
xiangyu long ◽  
Heping Li ◽  
Jianghua Yang ◽  
Lusheng Xin ◽  
Bin He ◽  
...  

Abstract Background: Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. Suc transporters (SUTs) play important roles during various steps of Suc transport in higher plants. Results: In our previous report, six SUT genes have been cloned in Hevea tree, among which HbSUT3 has been verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. Both phylogenetic analysis and subcellular localization identify HbSUT5 as a SUT4-clade (=type III) vacuolar membrane SUT, suggesting its potential participation in Suc exchange between lutoids (polydispersed microvacuoles) and cytosol in latex. Suc uptake assay in yeast identifies HbSUT5 as a typical Suc-H+ symporter, but the high affinity of HbSUT5 for Suc (Km = 2.03 mM at pH 5.5) and its similar efficiency in transporting maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. It is contrary to HbSUT3 that the transcripts of HbSUT5 are obviously decreased both in Hevea latex and bark during the treatments of tapping and ethephon, indicating it counteracts the yield-stimulating effects of two treatments. Conclusions: A vacuolar sucrose transporter, HbSUT5, may play an important role in Suc exchange between lutoids (polydispersed vacuoles) and latex in laticifers. It is better to understand that the whole HbSUT family regulate and control Suc accumulation in laticifers, influencing rubber yield formation in Hevea.


Sign in / Sign up

Export Citation Format

Share Document