scholarly journals Arabidopsis AtGPAT1, a Member of the Membrane-Bound Glycerol-3-Phosphate Acyltransferase Gene Family, Is Essential for Tapetum Differentiation and Male Fertility

2003 ◽  
Vol 15 (8) ◽  
pp. 1872-1887 ◽  
Author(s):  
Zhifu Zheng ◽  
Qun Xia ◽  
Melanie Dauk ◽  
Wenyun Shen ◽  
Gopalan Selvaraj ◽  
...  
2012 ◽  
Vol 40 (3) ◽  
pp. 2187-2194 ◽  
Author(s):  
Ting Jiang ◽  
Cong-Cong Hou ◽  
Zhen-Yu She ◽  
Wan-Xi Yang

Planta ◽  
2013 ◽  
Vol 238 (5) ◽  
pp. 907-922 ◽  
Author(s):  
Peng Wang ◽  
Zhunian Wang ◽  
Yongchao Dou ◽  
Xiaoxiao Zhang ◽  
Maoyuan Wang ◽  
...  

2019 ◽  
Author(s):  
Jiali Ye ◽  
Xuetong Yang ◽  
Zhiquan Yang ◽  
Wei Li ◽  
Qi Liu ◽  
...  

Abstract Background: Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. The specific expression of PG genes in anthers may be significant for male sterility research and hybrid wheat breeding, but it has not been characterized in wheat (Triticum aestivum L.). Results: We systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified and renamed as TaPG01–113 based on their chromosomal positions. The PG genes are unequally distributed on 21 chromosomes and classified according to six categories from A–F. Analysis of the gene structures and conserved motifs demonstrated that the Class C and D TaPGs have relatively short gene sequences and a small number of introns. Class E TaPGs are the least conserved and lack conserved domain III. Polyploidy and segmental duplications in wheat were mainly responsible for the expansion of the wheat PG gene family. Predictions of cis-elements indicate that TaPGs have a wide range of functions, including the responses to light, hypothermia, anaerobic conditions, and hormonal stimulation, as well as being involved in meristematic tissue expression. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics. Twelve spike-specific TaPGs were screened using RNA-seq data and verified by qRT-PCR in the sterile and fertile anthers of thermo-sensitive male-sterile wheat. Four important candidate genes were identified as involved in the male fertility determination process. In fertile anthers, TaPG09 may be involved in the separation of pollen. TaPG87 and TaPG95 could play important roles in anther dehiscence. TaPG93 may be related to pollen development and pollen tube elongation. Conclusions: We analyzed the wheat PG gene family and identified four important TaPGs with differential expression levels in the wheat fertility conversion process. Our findings may facilitate functional investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oliver Voigt ◽  
Benedetta Fradusco ◽  
Carolin Gut ◽  
Charalampos Kevrekidis ◽  
Sergio Vargas ◽  
...  

Enzymes of the α-carbonic anhydrase gene family (CAs) are essential for the deposition of calcium carbonate biominerals. In calcareous sponges (phylum Porifera, class Calcarea), specific CAs are involved in the formation of calcite spicules, a unique trait and synapomorphy of this class. However, detailed studies on the CA repertoire of calcareous sponges exist for only two species of one of the two Calcarea subclasses, the Calcaronea. The CA repertoire of the second subclass, the Calcinea, has not been investigated so far, leaving a considerable gap in our knowledge about this gene family in Calcarea. Here, using transcriptomic analysis, phylogenetics, and in situ hybridization, we study the CA repertoire of four additional species of calcareous sponges, including three from the previously unsampled subclass Calcinea. Our data indicate that the last common ancestor of Calcarea had four ancestral CAs with defined subcellular localizations and functions (mitochondrial/cytosolic, membrane-bound, and secreted non-catalytic). The evolution of membrane-bound and secreted CAs involved gene duplications and losses, whereas mitochondrial/cytosolic and non-catalytic CAs are evidently orthologous genes. Mitochondrial/cytosolic CAs are biomineralization-specific genes recruited for biomineralization in the last common ancestor of calcareous sponges. The spatial–temporal expression of these CAs differs between species, which may reflect differences between subclasses or be related to the secondary thickening of spicules during biomineralization that does not occur in all species. With this study, we extend the understanding of the role and the evolution of a key biomineralization gene in calcareous sponges.


2001 ◽  
Vol 357 (2) ◽  
pp. 551-556 ◽  
Author(s):  
Pawel GRZMIL ◽  
Youngmin KIM ◽  
Rahman SHAMSADIN ◽  
Jürgen NEESEN ◽  
Ibrahim M. ADHAM ◽  
...  

The mouse cyritestin gene is a member of the ADAM (adisintegrin and metalloprotease) gene family and codes for a membrane-anchored sperm protein. Recently, it was shown that cyritestin is critical for male fertility in the mouse. Spermatozoa of cyritestin-deficient mice are not able to bind to the zona pellucida of the oocyte and therefore unable to fertilize the egg. However, zona-free oocytes can be fertilized and the resulting embryos show normal development. In contrast to the mouse, where only one gene for cyritestin (Cyrn) is reported, two cyritestin genes (CYRN1 and CYRN2) are known in humans. The human CYRN1 and CYRN2 genes are located on chromosomes 8 and 16, respectively. We report that 27% of fertile men are deficient for the CYRN1 gene but that all have a CYRN2 gene, suggesting that the CYRN2 gene is the orthologous mouse cyritestin gene in humans and might be involved in sperm–egg interactions. However, the characterization of CYRN2 transcripts from testicular RNA of CYRN1-deficient men demonstrated many termination codons in the synthesized cyritestin cDNA. Furthermore, Western-blot analysis with human testicular protein extracts using an anti-cyritestin antibody failed to detect any cyritestin protein. These results demonstrate clearly that both cyritestin genes are non-functional in humans.


2019 ◽  
Vol 29 (21) ◽  
pp. 3699-3706.e5 ◽  
Author(s):  
Alyssa N. Kruger ◽  
Michele A. Brogley ◽  
Jamie L. Huizinga ◽  
Jeffrey M. Kidd ◽  
Dirk G. de Rooij ◽  
...  
Keyword(s):  

2019 ◽  
Vol 12 (1) ◽  
pp. 3615-3634 ◽  
Author(s):  
Guangshuai Liu ◽  
Huanxin Zhang ◽  
Chao Zhao ◽  
Honghai Zhang

Abstract Adaptation to a wide range of pathogenic environments is a major aspect of the ecological adaptations of vertebrates during evolution. Toll-like receptors (TLRs) are ancient membrane-bound sensors in animals and are best known for their roles in detecting and defense against invading pathogenic microorganisms. To understand the evolutionary history of the vertebrate TLR gene family, we first traced the origin of single-cysteine cluster TLRs that share the same protein architecture with vertebrate TLRs in early-branching animals and then analyzed all members of the TLR family in over 200 species covering all major vertebrate clades. Our results indicate that although the emergence of single-cysteine cluster TLRs predates the separation of bilaterians and cnidarians, most vertebrate TLR members originated shortly after vertebrate emergence. Phylogenetic analyses divided 1,726 vertebrate TLRs into 8 subfamilies, and TLR3 may represent the most ancient subfamily that emerged before the branching of deuterostomes. Our analysis reveals that purifying selection predominated in the evolution of all vertebrate TLRs, with mean dN/dS (ω) values ranging from 0.082 for TLR21 in birds to 0.434 for TLR11 in mammals. However, we did observe patterns of positive selection acting on specific codons (527 of 60,294 codons across all vertebrate TLRs, 8.7‰), which are significantly concentrated in ligand-binding extracellular domains and suggest host–pathogen coevolutionary interactions. Additionally, we found stronger positive selection acting on nonviral compared with viral TLRs, indicating the more essential nonredundant function of viral TLRs in host immunity. Taken together, our findings provide comprehensive insight into the complex evolutionary processes of the vertebrate TLR gene family, involving gene duplication, pseudogenization, purification, and positive selection.


2018 ◽  
Author(s):  
Katja R. Kasimatis ◽  
Megan J. Moerdyk-Schauwecker ◽  
Nadine Timmermeyer ◽  
Patrick C. Phillips

AbstractBackgroundNematode sperm have unique and highly diverged morphology and molecular biology. In particular, nematode sperm contain subcellular vesicles known as membranous organelles that are necessary for male fertility, yet play a still unknown role in overall sperm function. Here we take a novel proteomic approach to characterize the functional protein complement of membranous organelles in two Caenorhabditis species: C. elegans and C. remanei.ResultsWe identify distinct protein compositions between membranous organelles and the activated sperm body. Two particularly interesting and undescribed gene families—the Nematode-Specific Peptide family, group D and the here designated Nematode-Specific Peptide family, group F—localize to the membranous organelle. Both multigene families are nematode-specific and exhibit patterns of conserved evolution specific to the Caenorhabditis clade. These data suggest gene family dynamics may be a more prevalent mode of evolution than sequence divergence within sperm. Using a CRISPR-based knock-out of the NSPF gene family, we find no evidence of a male fertility effect of these genes, despite their high protein abundance within the membranous organelles.ConclusionsOur study identifies key components of this unique subcellular sperm component and establishes a path toward revealing their underlying role in reproduction.


Sign in / Sign up

Export Citation Format

Share Document