scholarly journals The Dual Functions of WLIM1a in Cell Elongation and Secondary Wall Formation in Developing Cotton Fibers

2013 ◽  
Vol 25 (11) ◽  
pp. 4421-4438 ◽  
Author(s):  
L.-B. Han ◽  
Y.-B. Li ◽  
H.-Y. Wang ◽  
X.-M. Wu ◽  
C.-L. Li ◽  
...  
2021 ◽  
Author(s):  
Tanîa M. Shiga ◽  
Haibing Yang ◽  
Bryan W. Penning ◽  
Anna T. Olek ◽  
Maureen C. McCann ◽  
...  

Abstract A modified TEMPO-catalyzed oxidation of the solvent-exposed glucosyl units of cellulose to uronic acids, followed by carboxyl reduction with NaBD 4 to 6-deutero- and 6,6-dideuteroglucosyl units, provided a robust method for determining relative proportions of disordered amorphous, ordered surface chains, and anhydrous core-crystalline residues of cellulose microfibrils inaccessible to TEMPO. Both glucosyl residues of cellobiose units, digested from amorphous chains of cellulose with a combination of cellulase and cellobiohydrolase, were deuterated, whereas those from anhydrous chains were undeuterated. By contrast, solvent-exposed and anhydrous residues alternate in surface chains, so only one of the two residues of cellobiosyl units was labeled. Although current estimates indicate that each cellulose microfibril comprises only 18 to 24 (1 , 4)- b eta-D-glucan chains, we show here that microfibrils of walls of Arabidopsis leaves and maize coleoptiles, and those of secondary wall cellulose of cotton fibers and poplar wood, bundle into much larger macrofibrils, with 67 to 86% of the glucan chains in the anhydrous domain. These results indicate extensive bundling of microfibrils into macrofibrils occurs during both primary and secondary wall formation. We discuss how, beyond lignin, the degree of bundling into macrofibrils contributes an additional recalcitrance factor to lignocellulosic biomass for enzymatic or chemical catalytic conversion to biofuel substrates.


2010 ◽  
Vol 63 (3) ◽  
pp. 469-483 ◽  
Author(s):  
Philippe Ranocha ◽  
Nicolas Denancé ◽  
Ruben Vanholme ◽  
Amandine Freydier ◽  
Yves Martinez ◽  
...  

2012 ◽  
Vol 194 (1) ◽  
pp. 102-115 ◽  
Author(s):  
Eryang Li ◽  
Apurva Bhargava ◽  
Weiya Qiang ◽  
Michael C. Friedmann ◽  
Natascha Forneris ◽  
...  

2016 ◽  
pp. pp.01100.2016 ◽  
Author(s):  
Zheng Li ◽  
Nooshin Omranian ◽  
Lutz Neumetzler ◽  
ting wang ◽  
Thomas Herter ◽  
...  

1952 ◽  
Vol 5 (4) ◽  
pp. 385 ◽  
Author(s):  
ABW Ardrop ◽  
HE Dadswell

Cell division, the nature of extra-cambial readjustment, and the development of the secondary wall in the tracheids of conifer stems have been investigated in both compression wood and normal wood. It has been shown that the reduction in tracheid length, accompanying the development of compression wood and, in normal wood, increased radial growth after suppression, result from an increase in the number of anticlinal divisions in the cambium. From observations of bifurcated and otherwise distorted cell tips in mature tracheids, of small but distinct terminal canals connecting the lumen to the primary wall in the tips of mature tracheids, and of the presence of only primary wall at the tips of partly differentiated tracheids, and from the failure to observe remnants of the parent primary walls at the ends of differentiating tracheids, it has been concluded that extra-cambial readjustment of developing cells proceeds by tip or intrusive growth. It has been further concluded that the development of the secondary wall is progressive towards the cell tips, on the bases of direct observation of secondary wall formation in developing tracheids and of the increase found in the number of turns of the micellar helix per cell with increasing cell length. The significance of this in relation to the submicroscopic organization of the cell wall has been discussed. Results of X-ray examinations and of measurements of� tracheid length in successive narrow tangential zones from the cambium into the xylem have indicated that secondary wall formation begins before the dimensional changes of differentiation are complete.


Sign in / Sign up

Export Citation Format

Share Document