scholarly journals Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize

2016 ◽  
Vol 28 (11) ◽  
pp. 2700-2714 ◽  
Author(s):  
Candice N. Hirsch ◽  
Cory D. Hirsch ◽  
Alex B. Brohammer ◽  
Megan J. Bowman ◽  
Ilya Soifer ◽  
...  
2006 ◽  
Vol 72 (3) ◽  
pp. 460-466 ◽  
Author(s):  
M. Rafiq ◽  
T. Fatima ◽  
T. Husnain ◽  
K. Bashir ◽  
M.A. Khan ◽  
...  

2009 ◽  
Vol 35 (3) ◽  
pp. 566-570 ◽  
Author(s):  
Jie-Ming WANG ◽  
Hai-Yang JIANG ◽  
Yang ZHAO ◽  
Yan XIANG ◽  
Su-Wen ZHU ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 527f-528
Author(s):  
I.L. Goldman

A fasciated flower stem character arose spontaneously during development of the red beet (Beta vulgaris L.) inbred line W411. The fasciated character is manifest by a flattened flower stem with petioles coalesced into a twisted, ribbonlike appearance. No fasciation is present in the vegetative stem or petioles. An inheritance study was conducted to determine the genetic control of flower stem fasciation. The inbred line W411 was used both as a male and female parent in crosses with four red beet inbred lines. Segregating progenies in both the BC1 and F2 generations were developed and scored for the fasciated flower stem character. Variable expression of the fasciated flower stem phenotype was observed in these progenies; however, the presence of flattened flower stems at the stem/hypocotyl junction was unequivocal. Chi-square goodness-of-fit tests in both the BC1 and F2 generations did not deviate significantly from expected ratios for a monogenic recessive character for each genetic background. No reciprocal differences were detected for any cross in this group of four inbred lines, which suggests the lack of maternal effect for the fasciated character. The symbol ffs is proposed to describe the genetic control of the fasciated flower stem phenotype.


Crop Science ◽  
1987 ◽  
Vol 27 (2) ◽  
pp. 354-356 ◽  
Author(s):  
Z. W. Wicks ◽  
M. L. Carson

Crop Science ◽  
2004 ◽  
Vol 44 (1) ◽  
pp. 5 ◽  
Author(s):  
A. Kahraman ◽  
I. Kusmenoglu ◽  
N. Aydin ◽  
A. Aydogan ◽  
W. Erskine ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiajia Wang ◽  
Jitao Li ◽  
Qianqian Ge ◽  
Zhao Chen ◽  
Jian Li

The Exopalaemon carinicauda could be a useful crustacean laboratory animal in many research fields. We newly established an inbred line of Exopalaemon carinicauda named EC4 inbred line by brother×sister mating and keeping to F11 generation. Trends in heterozygosity in the process of producing EC4 inbred line were examined through the characterization of polymorphisms based on gene frequencies of SNP and EST-SSR loci. The results demonstrated that the number of alleles (N), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) gradually decreased with the increase of inbreeding generations. The genetic detection results indicated that 9 (29.03%, 9/31) of the SNP loci and 15 (32.61%, 15/46) of the EST-SSR loci were homozygous in F11 generation of EC4 inbred line. The variation of the growth-related traits, the immune responses, and antioxidant status were described in experimental full-sibling inbred populations of E. carinicauda at five levels of inbreeding coefficient (F=0.785, F=0.816, F=0.859, F=0.886, F=0.908) under controlled laboratory conditions. The body weight, body length, and survival rate in EC4 inbred line of all generations were less than the control population. Inbreeding affected the antibacterial activity, phenoloxidase (PO) activity, and superoxide dismutase (SOD) which decreased at the eleventh generation of EC4 inbred line. This study demonstrated that inbreeding had a negative effect on the economic traits and immune response, but our inbred line was established successfully until F11 and confirmed by genetic detection using SNP and EST-SSR loci.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guifang Lin ◽  
Cheng He ◽  
Jun Zheng ◽  
Dal-Hoe Koo ◽  
Ha Le ◽  
...  

Abstract Background The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. Results Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus. Conclusions The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.


Sign in / Sign up

Export Citation Format

Share Document