Triaquabenzoatocalcium(II) monobenzoate: coordination polymer chains linked into a two-dimensional framework by hydrogen bonds

2005 ◽  
Vol 61 (10) ◽  
pp. m448-m449 ◽  
Author(s):  
Irena Senkovska ◽  
Ulf Thewalt
2014 ◽  
Vol 70 (4) ◽  
pp. 359-363 ◽  
Author(s):  
Zouaoui Setifi ◽  
Fatima Setifi ◽  
Mohamed Saadi ◽  
Djamil-Azzeddine Rouag ◽  
Christopher Glidewell

In the title compound, [Cu(C2N3)2(C12H10N6)]nor [Cu(dca)2(abpt)]n, where abpt is 4-amino-3,5-bis(pyridin-2-yl)-4H-1,2,4-triazole and dca is the dicyanamide anion, the CuIIcentre is five-coordinate with an approximately square-pyramidal geometry. One of the two dicyanamide ligands is a terminal ligand, but the other one acts as a μ1,5-bridging ligand between pairs of CuIIcentres, so generating a one-dimensional coordination polymer. A combination of N—H...N and C—H...N hydrogen bonds, augmented by π–π stacking interactions, links the coordination polymer chains into a bilayer structure. Comparisons are made with some related CuIIcomplexes containing dca ligands and heteroaromatic co-ligands.


2012 ◽  
Vol 68 (6) ◽  
pp. m826-m826
Author(s):  
Hong Chen ◽  
Heng Xu

In the two-dimensional title coordination polymer, [Zn(C8H4O4)(C14H14N4)] n , the ZnII atom adopts a distorted tetrahedral geometry, being ligated by two O atoms from two different benzene-1,3-dicarboxylate dianions and two N atoms from two symmetry-related 1,2-bis(imidazol-1-ylmethyl)benzene molecules. The dihedral angles between the imidazole rings and the benzene ring in the neutral ligand are 76.31 (13) and 85.33 (15)°. The ZnII atoms are bridged by dicarboxylate ligands, forming chains parallel to the a axis, which are further linked by 1,2-bis(imidazol-1-ylmethyl)benzene molecules, generating a two-dimensional layer structure parallel to the ac plane. The crystal structure is enforced by intralayer and interlayer C—H...O hydrogen bonds.


2014 ◽  
Vol 70 (3) ◽  
pp. m90-m91
Author(s):  
Seiya Tanaka ◽  
Akiko Himegi ◽  
Tomomi Ohishi ◽  
Akira Fuyuhiro ◽  
Satoshi Kawata

In the title coordination polymer, [Mn(C6Cl2O4)(C2H5OH)2]n, the MnIIatom and the chloranilate [systematic name: 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olate)] ion lie on crystallographic inversion centers. The geometry around the MnIIatom is a distorted octahedron involving four O atoms of two chloranilate ions and two O atoms from two ethanol molecules. The chloranilate ion serves as a bridging ligand between the MnIIions, leading to an infinite linear chain along theb-axis direction. The chains are linked by O—H...O hydrogen bonds between the apically coordinating ethanol molecule and the chloranilate ion, affording a two-dimensional layer expanding parallel to theabplane.


2001 ◽  
Vol 58 (1) ◽  
pp. 78-93 ◽  
Author(s):  
Choudhury M. Zakaria ◽  
George Ferguson ◽  
Alan J. Lough ◽  
Christopher Glidewell

In the complexes [Ni(cyclam)(OCOR)2] (cyclam = 1,4,8,11-tetraazacyclotetradecane), where (RCOO)− is 2-naphtho-ate [bis-(2-naphthoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (I), monoclinic P21/c, Z′ = 0.5], 3,5-dinitrobenzoate [bis-(3,5-dinitrobenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (II), triclinic P\bar 1, Z′ = 0.5], 4-nitrobenzoate [bis-(4-nitrobenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (III), monoclinic P21/n, Z′ = 0.5], 3-hydroxybenzoate [bis-(3-hydroxybenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (IV), monoclinic P21/c, Z′ = 0.5] and 4-aminobenzo-ate [bis-(4-aminobenzoato)-1,4,8,11-tetraazacyclotetradecanenickel(II), (V), monoclinic C2/c, Z′ = 0.5], the Ni lies on a centre of inversion with monodentate carboxylato ligands occupying trans sites. Compound (I) consists of isolated molecules. In (II) and (III), N—H...O hydrogen bonds link the complexes into chains. Compounds (IV) and (III) form two- and three-dimensional structures generated entirely by hard hydrogen bonds. The 5-hydroxyisophthalate(2−) anion forms a hydrated complex, [Ni(cyclam)(5-hydroxyisophthalate)(H2O)]·4H2O {[aqua-(5-hydroxyisophthalato)-1,4,8,11-tetraazacyclotetradecanenickel(II)] tetrahydrate, (VI), monoclinic Cc, Z′ = 1}, in which the monodentate carboxylato ligand and a water molecule occupy trans sites at Ni: extensive hydrogen bonding links the molecular aggregates into a three-dimensional framework. The terephthalate(2−) anion forms a hydrated linear coordination polymer {catena-poly[terephthalato-1,4,8,11-tetraazacyclotetradecanenickel(II)] monohydrate, (VII), monoclinic C2/c, Z′ = 0.5}. In 1,2,4,5-benzenecarboxylate tris[1,4,8,11-tetraazacyclotetradecanenickel(II)] diperchlorate hydrate (VIII), [Ni(cyclam)]3·[1,2,4,5-benzenetetracarboxylate(4−)]·[ClO4]2·-[H2O]3, there are two distinct Ni sites: [Ni(cyclam)]2+ and centrosymmetric [C10H2O8]4− units form a two-dimensional coordination polymer, whose sheets are linked by centrosymmetric [Ni(cyclam)(H2O)2]2+ cations.


Author(s):  
Rusul Alabada ◽  
Olga Kovalchukova ◽  
Irina Polyakova ◽  
Svetlana Strashnova ◽  
Vladimir Sergienko

In the title coordination polymer, [Ba(C5HN2O6)(C2O4)0.5(H2O)2]n, the tenfold coordination of the Ba centre consists of four O atoms from the two 4-nitro-2,5,6-trioxo-1,2,5,6-tetrahydropyridin-3-olate (L) anions, three O atoms of two oxalate anions and three water molecules. The Ba—O bond lengths fall in the range 2.698 (3)–2.978 (3) Å. TheLligand chelates two Ba atoms related by a screw axis, leading to formation of fused five- and six-membered chelate rings. Due to the bridging function of the ligands and water molecules, the complex monomers are connected into polymeric two-dimensional layers parallel to thebcplane. Intermolecular O—H...O hydrogen bonds link these layers into a three-dimensional supramolecular framework.


Author(s):  
Magdalena Wilk ◽  
Jan Janczak ◽  
Veneta Videnova-Adrabinska

The rigid organic ligand (pyridine-3,5-diyl)diphosphonic acid has been used to create the title novel three-dimensional coordination polymer, [Ca(C5H6NO6P2)2(H2O)]n. The six-coordinate calcium ion is in a distorted octahedral environment, formed by five phosphonate O atoms from five different (pyridin-1-ium-3,5-diyl)diphosphonate ligands, two of which are unique, and one water O atom. Two crystallographically independent acid monoanions,L1 andL2, serve to link metal centres using two different coordination modes,viz.η2μ2and η3μ3, respectively. The latter ligand,L2, forms a strongly undulated two-dimensional framework parallel to the crystallographicbcplane, whereas the former ligand,L1, is utilized in the formation of one-dimensional helical chains in the [010] direction. The two sublattices ofL1 andL2 interweave at the Ca2+ions to form a three-dimensional framework. In addition, multiple O—H...O and N—H...O hydrogen bonds stabilize the three-dimensional coordination network. Topologically, the three-dimensional framework can be simplified as a very unusual (2,3,5)-connected three-nodal net represented by the Schläfli symbol (4·82)(4·88·10)(8).


2017 ◽  
Vol 73 (11) ◽  
pp. 1782-1785
Author(s):  
Hyunjin Park ◽  
Jineun Kim ◽  
Hansu Im ◽  
Tae Ho Kim

The reaction of copper(I) iodide with 1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one (L, C13H19NOS) in acetonitrile/dichloromethane results in a crystalline coordination polymer, namely poly[bis{μ2-1-[2-(cyclohexylsulfanyl)ethyl]pyridin-2(1H)-one}tetra-μ3-iodidotetracopper(I)], [Cu4I4L2]n. The asymmetric unit comprises two ligand molecules, four copper(I) ions and four iodide ions. Interestingly, the O atoms are bound to the soft copper(I) ions. The stair-step clusters of Cu and I atoms in the asymmetric unit are linked repeatedly, giving rise to infinite chains along [100]. Neighbouring infinite chains are linked through theLmolecules, forming a two-dimensional brick-wall structure. These two-dimensional networks are stacked alternately along [001]. Additionally, there are intermolecular C—H...I hydrogen bonds and C—H...π interactions between the ligands.


IUCrData ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Selma Khelfa ◽  
Marwa Touil ◽  
Zouaoui Setifi ◽  
Fatima Setifi ◽  
Mohammed Hadi Al-Douh ◽  
...  

In the title compound, [CdNi(C9H8N2)2(CN)4] n , the Cd and Ni atoms both lie on centres of inversion in space group P21/c. The Cd atom is coordinated by two bidentate quinolin-8-amine ligands and by the N atoms of two cyano ligands, while the square planar Ni atom is coordinated by the C atoms of four cyano ligands. These units form a one-dimensional coordination polymer containing an (–NC—Ni—CN—Cd–) n backbone, and the coordination polymer chains are linked into a three-dimensional array by a combination of N—H...N and C—H...N hydrogen bonds, augmented by a π–π stacking interaction.


2012 ◽  
Vol 26 (13) ◽  
pp. 1250083
Author(s):  
G. N. HAYRAPETYAN ◽  
V. F. MOROZOV ◽  
V. V. PAPOYAN ◽  
S. S. POGHOSYAN ◽  
V. B. PRIEZZHEV

The helix-coil transition in a double-stranded homopolynucleotide is considered. The new approach to the melted loops account is proposed. The relative distance between the corresponding monomers of two polymer chains is modeled by the two-dimensional random walk on the square lattice. Returns of the random walk to the origin describe the formation of hydrogen bonds between complementary units. To take into account the interaction of monomers inside the chains, we consider various regimes of return to the origin. One of them involves two competing interactions and demonstrates a nontrivial sharp denaturation transition. The rich phase behavior of the double-stranded homopolynucleotide is discussed in terms of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document