scholarly journals On-line X-ray diffraction for quantitative phase analysis: an industrial application of the Rietveld method

2002 ◽  
Vol 58 (s1) ◽  
pp. c243-c243
Author(s):  
N. V. Y. Scarlett ◽  
I. C. Madsen ◽  
P. Storer
1966 ◽  
Vol 38 (12) ◽  
pp. 1741-1745 ◽  
Author(s):  
R. F. Karlak ◽  
D. S. Burnett

1957 ◽  
Vol 1 ◽  
pp. 39-58
Author(s):  
Ralph H. Hiltz ◽  
Stanley L. Lopata

AbstractIn view of present difficulties encountered in met alio graphic methods of phase analysis of titanium and its alloys, the possibility of utilizing integrated X-ray intensities for phase analysis was investigated. Power Formula variables were calculated for titanium, and relative areas of three alpha and one beta peak were determined. Recorded X-ray intensities were obtained from a large number of titanium specimens. The recorded intensities were analyzed and the results compared with those from metallographic analysis. The errors in the method arising from the nature of titanium, texture and peak overlapping, were studied and where possible, compensated for by adjusting the method of measurement and calculation.


2007 ◽  
Vol 57 (12) ◽  
pp. 1145-1148 ◽  
Author(s):  
LaReine A. Yeoh ◽  
Klaus-Dieter Liss ◽  
Arno Bartels ◽  
Harald Chladil ◽  
Maxim Avdeev ◽  
...  

2005 ◽  
Vol 20 (3) ◽  
pp. 218-223 ◽  
Author(s):  
Chang-An Wang ◽  
Aiguo Zhou ◽  
Liang Qi ◽  
Yong Huang

Materials in the Ti–Al–C ternary system commonly contain three coexisting phases, Ti3AlC2, Ti2AlC, and TiC. Quantitative phase analysis in this ternary system was investigated using X-ray diffraction. First, nonoverlap diffraction peaks were selected: the (002) peak at 2θ=9.5° for Ti3AlC2 (I∕I0=26.5), the (002) peak at 2θ=13.0° for Ti2AlC (I∕I0=39), and the (111) peak at 2θ=35.9° for TiC (I∕I0=78), respectively. Then, based on the mixing-sample method without internal standards, a set of equations was derived for determining the amounts of Ti3AlC2, Ti2AlC, and TiC in a sample using the intensities of the selected diffraction peaks. Finally, the applicability and error sources for this method were investigated. The method is simple and straightforward, and is applicable to the entire Ti–Al–C ternary system, since the derivation of this equation group is self-checking.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Matthew R. Rowles

The quality of X-ray powder diffraction data and the number and type of refinable parameters have been examined with respect to their effect on quantitative phase analysis (QPA) by the Rietveld method using data collected from two samples from the QPA round robin [Madsen, Scarlett, Cranswick & Lwin (2001). J. Appl. Cryst. 34, 409–426]. From the analyses of these best-case-scenario specimens, a series of recommendations for minimum standards of data collection and analysis are proposed. It is hoped that these will aid new QPA-by-Rietveld users in their analyses.


Author(s):  
Alexander M. Sherwood ◽  
Robert B. Kargbo ◽  
Kristi W. Kaylo ◽  
Nicholas V. Cozzi ◽  
Poncho Meisenheimer ◽  
...  

Psilocybin {systematic name: 3-[2-(dimethylamino)ethyl]-1H-indol-4-yl dihydrogen phosphate} is a zwitterionic tryptamine natural product found in numerous species of fungi known for their psychoactive properties. Following its structural elucidation and chemical synthesis in 1959, purified synthetic psilocybin has been evaluated in clinical trials and has shown promise in the treatment of various mental health disorders. In a recent process-scale crystallization investigation, three crystalline forms of psilocybin were repeatedly observed: Hydrate A, Polymorph A, and Polymorph B. The crystal structure for Hydrate A was solved previously by single-crystal X-ray diffraction. This article presents new crystal structure solutions for the two anhydrates, Polymorphs A and B, based on Rietveld refinement using laboratory and synchrotron X-ray diffraction data, and density functional theory (DFT) calculations. Utilizing the three solved structures, an investigation was conducted via Rietveld method (RM) based quantitative phase analysis (QPA) to estimate the contribution of the three different forms in powder X-ray diffraction (PXRD) patterns provided by different sources of bulk psilocybin produced between 1963 and 2021. Over the last 57 years, each of these samples quantitatively reflect one or more of the hydrate and anhydrate polymorphs. In addition to quantitatively evaluating the composition of each sample, this article evaluates correlations between the crystal forms present, corresponding process methods, sample age, and storage conditions. Furthermore, revision is recommended on characterizations in recently granted patents that include descriptions of crystalline psilocybin inappropriately reported as a single-phase `isostructural variant.' Rietveld refinement demonstrated that the claimed material was composed of approximately 81% Polymorph A and 19% Polymorph B, both of which have been identified in historical samples. In this article, we show conclusively that all published data can be explained in terms of three well-defined forms of psilocybin and that no additional forms are needed to explain the diffraction patterns.


Sign in / Sign up

Export Citation Format

Share Document