scholarly journals MgIr, a new intermetallic compound with 25-atoms crystal structure solved from powder diffraction

2004 ◽  
Vol 60 (a1) ◽  
pp. s73-s73
Author(s):  
R. Cerny ◽  
G. Renaudin ◽  
V. Favre-Nicolin
2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-6
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pomalidomide Form I has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pomalidomide Form I crystallizes in the space group P-1 (#2) with a = 7.04742(9), b = 7.89103(27), c = 11.3106(6) Å, α = 73.2499(13), β = 80.9198(9), γ = 88.5969(6)°, V = 594.618(8) Å3, and Z = 2. The crystal structure is characterized by the parallel stacking of planes parallel to the bc-plane. Hydrogen bonds link the molecules into double layers also parallel to the bc-plane. Each of the amine hydrogen atoms acts as a donor to a carbonyl group in an N–H⋯O hydrogen bond, but only two of the four carbonyl groups act as acceptors in such hydrogen bonds. Other carbonyl groups participate in C–H⋯O hydrogen bonds. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2021 ◽  
pp. 1-7
Author(s):  
Nilan V. Patel ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tamsulosin hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Tamsulosin hydrochloride crystallizes in space group P21 (#4) with a = 7.62988(2), b = 9.27652(2), c = 31.84996(12) Å, β = 93.2221(2)°, V = 2250.734(7) Å3, and Z = 4. In the crystal structure, two arene rings are connected by a carbon chain oriented roughly parallel to the c-axis. The crystal structure is characterized by two slabs of tamsulosin hydrochloride molecules perpendicular to the c-axis. As expected, each of the hydrogens on the protonated nitrogen atoms makes a strong hydrogen bond to one of the chloride anions. The result is to link the cations and anions into columns along the b-axis. One hydrogen atom of each sulfonamide group also makes a hydrogen bond to a chloride anion. The other hydrogen atom of each sulfonamide group forms bifurcated hydrogen bonds to two ether oxygen atoms. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1415.


2021 ◽  
Vol 36 (1) ◽  
pp. 35-42
Author(s):  
Shivang Bhaskar ◽  
Joseph T. Golab ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pimecrolimus Form B has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Pimecrolimus crystallizes in the space group P21 (#4) with a = 15.28864(7), b = 13.31111(4), c = 10.95529(5) Å, β = 96.1542(3)°, V = 2216.649(9) Å3, and Z = 2. Although there are an intramolecular six-ring hydrogen bond and some larger chain and ring patterns, the crystal structure is dominated by van der Waals interactions. There is a significant difference between the conformation of the Rietveld-refined and the DFT-optimized structures in one portion of the macrocyclic ring. Although weak, intermolecular interactions are apparently important in determining the solid-state conformation. The powder pattern is included in the Powder Diffraction File™ (PDF®) as entry 00-066-1619. This study provides the atomic coordinates to be added to the PDF entry.


2021 ◽  
pp. 1-8
Author(s):  
Joel W. Reid ◽  
James A. Kaduk

The crystal structure of donepezil hydrochloride, form III, has been solved with FOX using laboratory powder diffraction data previously submitted to and published in the Powder Diffraction File. Rietveld refinement with GSAS yielded monoclinic lattice parameters of a = 14.3662(9) Å, b = 11.8384(6) Å, c = 13.5572(7) Å, and β = 107.7560(26)° (C24H30ClNO3, Z = 4, space group P21/c). The Rietveld-refined structure was compared to a density functional theory (DFT)-optimized structure, and the structures exhibit excellent agreement. Layers of donepezil molecules parallel to the (101) planes are maintained by columns of chloride anions along the b-axis, where each chloride anion hydrogen bonds to three donepezil molecules each.


1993 ◽  
Vol 102 (2) ◽  
pp. 340-348 ◽  
Author(s):  
Staffan Hansen ◽  
Kenny Ståhl ◽  
Roland Nilsson ◽  
Arne Andersson

2021 ◽  
pp. 1-3
Author(s):  
Carina Schlesinger ◽  
Edith Alig ◽  
Martin U. Schmidt

The structure of the anticancer drug carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, C5H9Cl2N3O2) was successfully determined from laboratory X-ray powder diffraction data recorded at 278 K and at 153 K. Carmustine crystallizes in the orthorhombic space group P212121 with Z = 4. The lattice parameters are a = 19.6935(2) Å, b = 9.8338(14) Å, c = 4.63542(6) Å, V = 897.71(2) ų at 153 K, and a = 19.8522(2) Å, b = 9.8843(15) Å, c = 4.69793(6) Å, V = 921.85(2) ų at 278 K. The Rietveld fits are very good, with low R-values and smooth difference curves of calculated and experimental powder data. The molecules form a one-dimensional hydrogen bond pattern. At room temperature, the investigated commercial sample of carmustine was amorphous.


2015 ◽  
Vol 30 (3) ◽  
pp. 192-198
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of ziprasidone hydrochloride monohydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Ziprasidone hydrochloride monohydrate crystallizes in space group P-1 (#2) with a = 7.250 10(3), b = 10.986 66(8), c = 14.071 87(14) Å, α = 83.4310(4), β = 80.5931(6), γ = 87.1437(6)°, V = 1098.00(1) Å3, and Z = 2. The ziprasidone conformation in the solid state is very close to the minimum energy conformation. The positively-charged nitrogen in the ziprasidone makes a strong hydrogen bond with the chloride anion. The water molecule makes two weaker bonds to the chloride, and acts as an acceptor in an N–H⋯O hydrogen bond. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1492.


2020 ◽  
Vol 35 (2) ◽  
pp. 129-135
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of atazanavir has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Atazanavir crystallizes in space group P21 (#4) with a = 15.33545(7), b = 5.90396(3), c = 21.56949(13) Å, β = 96.2923(4)°, V = 1941.134(11) Å3, and Z = 2. Despite being labeled as “atazanavir sulfate”, the commercial reagent sample consisted of atazanavir free base. The structure consists of an array of extended-conformation molecules parallel to the ac-plane. Although the atazanavir molecule contains only four classical hydrogen bond donors, hydrogen bonding is, surprisingly, important to the crystal energy. Both intra- and intermolecular hydrogen bonds are significant. The hydroxyl group forms bifurcated intramolecular hydrogen bonds to a carbonyl oxygen atom and an amide nitrogen. Several amide nitrogens act as donors to the hydroxyl group and carbonyl oxygen atoms. An amide nitrogen acts as a donor to another amide nitrogen. Several methyl, methylene, methyne, and phenyl hydrogens participate in hydrogen bonds to carbonyl oxygens, an amide nitrogen, and the pyridine nitrogen. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1426.


Sign in / Sign up

Export Citation Format

Share Document