scholarly journals High-pressure single-crystal study of dravite

2017 ◽  
Vol 73 (a1) ◽  
pp. a408-a408
Author(s):  
Earl O'Bannon ◽  
Martin Kunz ◽  
Christine Beavers ◽  
Quentin Williams
2005 ◽  
Vol 61 (a1) ◽  
pp. c375-c375
Author(s):  
S. Nazzareni ◽  
P. Comodi ◽  
M. Montagnoli ◽  
P. F. Zanazzi

2012 ◽  
Vol 32 (3) ◽  
pp. 442-449 ◽  
Author(s):  
Wanaruk Chaimayo ◽  
Lars F. Lundegaard ◽  
Ingo Loa ◽  
Graham W. Stinton ◽  
Alistair R. Lennie ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C898-C898 ◽  
Author(s):  
Nicola Casati ◽  
Andrew Jephcoat ◽  
Heribert Wilhelm ◽  
Piero Macchi

Pressure is known to trigger unusual chemical reactivity in molecular solids. In particular, small molecules containing unsaturated bonds are subject to oligo- or polymerization, effectively synthesizing new compounds. These are tipically energetic materials which can be amorphous, as in the case of carbon monoxide,[1] or crystalline, as for carbon dioxide phase V.[2] In more complex molecular systems, where unsaturated bonds can be only one of the present moieties, stereo-controlled reactivity can be exploited to synthesize topo-tactic structures. We performed a synchrotron single crystal experiment on oxalic acid dihydrate up to 54.7 GPa, using He as pressure transmitting medium to ensure hydrostatic behavior. This is, to the best of our knowledge, the highest pressure ever achieved in a single crystal study on an organic molecule. It had been reported that the species undergoes a proton transfer at mild pressures,[3] and further compression confirms the major role played by hydrogen bonds. After the proton transfer, the species undergoes two phase transitions, caused mainly by a rearrangement of hydrogen bonding patterns, that does not demage the singly crystal nature of the sample. At ~40 GPa an initial bending of the flat oxalic molecule is observed, sign of an enhanced nucleophilic interaction between one oxygen and the carbon of a neighbor molecule. At the highest pressure achieved, a further phase transition is observed. Although the crystallinity is decreased, the new unit cell shows a drastic shrinking in one specific direction. Periodic DFT calculations reveal this metric is compatible with an ordered polymerization of the oxalic acid created by a nucleophilic addition: a monodimensional covalent organic framework is the resulting material (figure). This observation, unique up to now in its kind, is of high relevance for crystal engineering and highlights the potential of high pressure to stimulate new chemistry.


2017 ◽  
Vol 122 (8) ◽  
pp. 6294-6305 ◽  
Author(s):  
Earl O'Bannon ◽  
Christine M. Beavers ◽  
Martin Kunz ◽  
Quentin Williams

2008 ◽  
Vol 93 (11-12) ◽  
pp. 1921-1928 ◽  
Author(s):  
P.F. Zanazzi ◽  
F. Nestola ◽  
S. Nazzareni ◽  
P. Comodi

2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2021 ◽  
Vol 1 (1) ◽  
pp. 143-149
Author(s):  
Wei Cao ◽  
Deng Gao ◽  
Hongyang Zhao ◽  
Zhibin Ma

Sign in / Sign up

Export Citation Format

Share Document