The electric susceptibility, piezoelectric, elastic, photoelastic, Brillouin and Raman tensors for point groups with twelvefold rotation axes

1992 ◽  
Vol 48 (3) ◽  
pp. 350-352 ◽  
Author(s):  
Y.-J. Jiang ◽  
L.-J. Liao ◽  
G. Chen ◽  
J.-J. Shen
2008 ◽  
Vol 41 (4) ◽  
pp. 803-807 ◽  
Author(s):  
Youliang He ◽  
John J. Jonas

The symmetry-reduced misorientation,i.e.disorientation, between two crystals is represented in the angle–axis format, and the maximum disorientation angle between any two lattices of the 32 point groups is obtained by constructing the fundamental zone of the associated misorientation space (i.e.Rodrigues–Frank space) using quaternion algebra. A computer program based on vertex enumeration was designed to automatically calculate the vertices of these fundamental zones and to seek the maximum disorientation angles and respective rotation axes. Of the C_{32}^2 = 528 possible combinations of any two crystals, 129 pairs give rise to incompletely bounded fundamental zones (i.e.zones having at least one unbounded direction inR3); these correspond to a maximum disorientation angle of 180° (the trivial value). The other 399 pairs produce fully bounded fundamental zones that lead to nine different nontrivial maximum disorientation angles; these are 56.60, 61.86, 62.80, 90, 90.98, 93.84, 98.42, 104.48 and 120°. The associated rotation axes were obtained and are plotted in stereographic projection. These angles and axes are solely determined by the symmetries of the point groups under consideration, and the only input data needed are the symmetry operators of the lattices.


1992 ◽  
Vol 23 (6) ◽  
pp. 319-323
Author(s):  
Yi-Jian Jiang ◽  
Li-Ji Liao ◽  
Gang Chen ◽  
Peng-Xiang Zhang
Keyword(s):  

Author(s):  
Robert E. Newnham

All single crystals possess translational symmetry, and most possess other symmetry elements as well. In this chapter we describe the 32 crystallographic point groups used for single crystals. The seven Curie groups used for textured polycrystalline materials are enumerated in the next chapter. We live in a three-dimensional world which means that there are basically four kinds of geometric symmetry operations relating one part of this world to another. The four primary types of symmetry are translation, rotation, reflection, and inversion. As pictured in Fig. 3.1, these symmetry operators operate on a point with coordinates Z1, Z2, Z3 and carry it to a new position. By definition, all crystals have a unit cell that is repeated many times in space, a point Z1, Z2, Z3 is repeated over and over again as one unit cell is translated to the next. A mirror plane perpendicular to one of the principal axes is a two-dimensional symmetry element that reverses the sign of one coordinate. Rotation axes are one-dimensional symmetry elements that change two coordinates, while an inversion center is a zero-dimensional point that changes all three coordinates. In developing an understanding of the macroscopic properties of crystals, we recognize that the scale of physical property measurements is much larger than the unit cell dimensions. It is for this reason that we are not concerned about translational symmetry and work with the 32 point group symmetries rather than the 230 space groups. This greatly simplifies the structure–property relationships in crystal physics. Aside from the identity operator 1, there are only four types of rotational symmetry consistent with the translation symmetry common to all crystals. Fig. 3.2 shows why. Parallelograms, equilateral triangles, squares, and hexagons will pack together to fill space but, pentagons symmetry axes are found in crystals. This is the starting point for generating the 32 crystal classes. When taken in combination with mirror planes and inversion centers, these four types of rotation axes are capable of forming 32 self-consistent three-dimensional symmetry patterns around a point. These are the so-called 32 crystal classes or crystallographic point groups.


1979 ◽  
Author(s):  
Jan Hermans

Measurements of light scattering have given much information about formation and properties of fibrin. These studies have determined mass-length ratio of linear polymers (protofibrils) and of fibers, kinetics of polymerization and of lateral association and volume-mass ratio of thick fibers. This ratio is 5 to 1. On the one hand, this high value suggests that the fiber contains channels that allow the diffusion of enzymes such as Factor XHIa and plasmin; on the other hand, the high value appears paradoxical for a stiff fiber made up of elongated units (fibrin monomers) arranged in parallel. Such a high fiber volume is a property of only a small set out of many high-symmetry models of fibrin, which may be constructed from overlapping three-domain monomers which are arranged into strands, are aligned nearly parallel to the fiber axis and make adequate longitudinal and lateral contacts. These models contain helical protofibrils related to each other by rotation axes parallel to the fiber axis. The protofibrils may contain 2, 3 or 4 monomers per helical turn and there are four possible symmetries. A large specific volume is achieved if the ends of each monomer are slightly displaced from the protofibril axis, either by a shift or by a tilt of the monomer. The fiber containing tilted monomers is more highly interconnected; the two ends of a tilted monomer form lateral contacts with different adjacent protofibrils, whereas the two ends of a non-tilted monomer contact the same adjacent protofibril(s).


Author(s):  
Xiaoli Zhang ◽  
Carl A. Nelson

The size and limited dexterity of current surgical robotic systems are factors which limit their usefulness. To improve the level of assimilation of surgical robots in minimally invasive surgery (MIS), a compact, lightweight surgical robotic positioning mechanism with four degrees of freedom (DOF) (three rotational DOF and one translation DOF) is proposed in this paper. This spatial mechanism based on a bevel-gear wrist is remotely driven with three rotation axes intersecting at a remote rotation center (the MIS entry port). Forward and inverse kinematics are derived, and these are used for optimizing the mechanism structure given workspace requirements. By evaluating different spherical geared configurations with various link angles and pitch angles, an optimal design is achieved which performs surgical tool positioning throughout the desired kinematic workspace while occupying a small space bounded by a hemisphere of radius 13.7 cm. This optimized workspace conservatively accounts for collision avoidance between patient and robot or internally between the robot links. This resultant mechanism is highly compact and yet has the dexterity to cover the extended workspace typically required in telesurgery. It can also be used for tool tracking and skills assessment. Due to the linear nature of the gearing relationships, it may also be well suited for implementing force feedback for telesurgery.


1989 ◽  
Vol 44 (10) ◽  
pp. 1221-1227 ◽  
Author(s):  
W. Preetz ◽  
W. Kuhr

The mixed chloro-bromo-rhodates(III) [RhClnBr6-n]3-, n = 1-5, have been separated for the first time by ion exchange chromatography on diethylaminoethyl-cellulose. Due to the stronger trans-effect of Br, as compared with Cl, on treatment of [RhBr6]3- with conc. HCl nearly pure cis/fac-isomers for n = 2, 3, 4 are formed. The reaction of [RhCl6]3- with conc. HBr yields mixtures of the cis/trans-isomers for n = 2, 4, which cannot be separated, but mer-[RhCl3Br3]3 is formed stereospecifically. The IR and Raman spectra of all isolated mixed ligand complexes are completely assigned according to point groups Oh, D3d, C4v, C3v and C2v, supported by normal coordinate analyses based on a general valence force field. The good agreement of calculated and observed frequencies confirms the assignments. Due to the stronger trans-influence of Br as compared to Cl, in all asymmetric Cl—Rh—Br axes the Rh—Br bonds are strengthened and the Rh—Cl bonds are weakened, indicated by valence force constants for Rh—Br approximately 14% higher, for Rh—Cl 10% lower, as compared with the values calculated for symmetric Br—Rh—Br and Cl—Rh—Cl axes, respectively.


2015 ◽  
Vol 92 (8) ◽  
pp. 1422-1425 ◽  
Author(s):  
Lan Chen ◽  
Hongwei Sun ◽  
Chengming Lai

Sign in / Sign up

Export Citation Format

Share Document