Purification, crystallization and preliminary X-ray diffraction studies on the thermostable catechol 2,3-dioxygenase of Bacillus stearothermophilus expressed in Escherichia coli

1998 ◽  
Vol 54 (3) ◽  
pp. 446-447 ◽  
Author(s):  
Min-Qin Chen ◽  
Chang-Chuan Yin ◽  
Wei Zhang ◽  
Yu-Min Mao ◽  
Zhi-Hong Zhang

The thermostable catechol 2,3-dioxygenase of Bacillus stearothermophilus has been crystallized. The crystal is probably in the space group I 222 with unit-cell dimensions of a = 70.87, b = 74.60 and c = 133.69 Å. A native data set has been collected with a completeness of 96% at 2.22 Å resolution and an R merge value of 0.091.

2006 ◽  
Vol 21 (3) ◽  
pp. 210-213 ◽  
Author(s):  
Mohamed Chakir ◽  
Abdelaziz El Jazouli ◽  
Jean-Pierre Chaminade

A new Nasicon phosphates series [Na3+xCr2−xCox(PO4)3(0⩽x⩽1)] was synthesized by a coprecipitation method and structurally characterized by powder X-ray diffraction. The selected compound Na3.5Cr1.5Co0.5(PO4)3 (x=0.5) crystallizes in the R3c space group with the following hexagonal unit-cell dimensions: ah=8.7285(3) Å, ch=21.580(2) Å, V=1423.8(1) Å3, and Z=6. This three-dimensional framework is built of PO4 tetrahedra and Cr∕CoO6 octahedra sharing corners. Na atoms occupy totally M(1) sites and partially M(2) sites.


1999 ◽  
Vol 55 (4) ◽  
pp. 869-872 ◽  
Author(s):  
Anna Teplitsky ◽  
Smadar Shulami ◽  
Sara Moryles ◽  
Galia Zaide ◽  
Yuval Shoham ◽  
...  

α-D-Glucuronidases cleave the α-1,2-glycosidic bond of the 4-O-methyl-α-D-glucuronic acid side chain in xylan. Of the xylan-debranching hydrolases, these enzymes are the least studied and characterized. The α-glucuronidase gene (aguA) from Bacillus stearothermophilus T-6 has been cloned, sequenced and overproduced in Escherichia coli. The gene encodes for a protein of 679 amino acids with a calculated molecular weight of 78480 and a pI of 5.42. α-Glucuronidase T-6 shows high homology to the α-glucuronidases of Thermotoga maritima (60% identity) and of Trichoderma reesei (44% identity). Based on the amino-acid sequence similarity, it is likely that these enzymes represent a new class of glycosyl hydrolases. Crystallographic studies of α-glucuronidase T-6 were initiated to study the mechanism of catalysis, as well as to provide a structural basis for rational introduction of enhanced thermostability by site-specific mutagenesis. In this report, the crystallization and preliminary crystallographic characterization of the native α-glucuronidase T-6 enzyme is described. Two crystal forms were found suitable for detailed crystal structure analysis. The T1 form was obtained by the vapour-diffusion method using PEG 4000 as a precipitant and 2-propanol as an organic additive. The crystals belong to a primitive tetragonal crystal system (space group P41212 or P43212) with unit-cell dimensions a = b = 76.1 and c = 331.2 Å. These crystals are mechanically strong, are stable in the X-ray beam and diffract X-rays to better than 2.4 Å resolution. A full 3.0 Å resolution diffraction data set (97.3% completeness, R merge 9.8%) has recently been collected on one crystal at room temperature using a rotating-anode X-ray source and an R-AXIS IIc imaging-plate detector. The M1 form was obtained and characterized by similar techniques. The best crystallization occurred at a slightly lower pH and a lower concentration of 2-propanol. The crystals belong to a primitive monoclinic crystal system (space group P21) with unit-cell dimensions a = 65.8, b = 127.4, c = 96.6 Å and β = 97.9°. These crystals are also quite strong and stable, and diffract to better than 2.8 Å resolution. A full 2.8 Å resolution diffraction data set (96.2% completeness, R merge 7.6%) has recently been collected on one crystal at room temperature using the same R-AXIS IIc setup. Both forms are currently being used to obtain crystallographic phasing via isomorphous heavy-atom derivatives and selenomethionine MAD experiments.


1989 ◽  
Vol 42 (11) ◽  
pp. 2051 ◽  
Author(s):  
GD Fallon ◽  
L Spiccia

The crystal structure of [Rh(OH2)6](ClO4)3.3H2O has been determined by single-crystal X-ray diffraction and found to be isomorphous with that of M(ClO4)2.6H2O (M= Fe, Zn, Mn, Co, Ni) and LiClO4.3H2O. Crystal: are hexagonal, space group P63mc with unit cell dimensions a 7.817(2) and c 5.208(1) �. The lattice consists of a uniform arrangement of H2O and ClO4- groups with the RhIII centre occupying 1/3 of the octahedral sites formed by the H2O groups. The RhIII is not situated at the centre of the octahedron. However, the two Rh-O distances [2.128(6) and 2.136(6) �] may be considered identical, i.e. within the errors.


1996 ◽  
Vol 11 (4) ◽  
pp. 301-304
Author(s):  
Héctor Novoa de Armas ◽  
Rolando González Hernández ◽  
José Antonio Henao Martínez ◽  
Ramón Poméz Hernández

p-nitrophenol, C6H5NO3, and disophenol, C6H3I2NO3, have been investigated by means of X-ray powder diffraction. The unit cell dimensions were determined from diffractometer methods, using monochromatic CuKα1 radiation, and evaluated by indexing programs. The monoclinic cell found for p-nitrophenol was a=6.159(2) Å, b=8.890(2) Å, c=11.770(2) Å, β=103.04(2)°, Z=4, space group P21 or P2l/m, Dx=1.469 Mg/m3. The monoclinic cell found for disophenol has the dimensions a=8.886(1) Å, b=14.088(2) Å, c=8.521(1) Å, β=91.11(1)°, Z=4, space group P2, P2, Pm or P2/m, Dx=2.438 Mg/m3.


1992 ◽  
Vol 7 (2) ◽  
pp. 109-111 ◽  
Author(s):  
C.J. Rawn ◽  
R.S. Roth ◽  
H.F. McMurdie

AbstractSingle crystals and powder samples of Ca2Bi5O5and Ca4Bi6O13have been synthesized and studied using single crystal X-ray diffraction as well as X-ray and neutron powder diffraction. Unit cell dimensions were calculated using a least squares analysis that refined to a δ2θof no more than 0.03°. A triclinic cell was found with space group , a = 10.1222(7), b = 10.1466(6), c = 10.4833(7) Å. α= 116.912(5), β= 107.135(6) and γ= 92.939(6)°, Z = 6 for the Ca2Bi2O5compound. An orthorhombic cell was found with space group C2mm, a = 17.3795(5), b = 5.9419(2) and c = 7.2306(2) Å, Z = 2 for the Ca4Bi6O13compound.


1999 ◽  
Vol 55 (2) ◽  
pp. 539-541
Author(s):  
Palangpon Kongsaeree ◽  
Jun Liang ◽  
Roy A. Jensen ◽  
Jon Clardy

The title protein has been crystallized in a new crystal form. The crystals belong to the cubic space group P4132 (or P4332) with unit-cell dimensions a = b = c = 126.1 Å at 100 K and typically diffract beyond 1.6 Å at the Cornell High Energy Synchotron Source (CHESS) A1 beamline.


1981 ◽  
Vol 36 (2) ◽  
pp. 135-137 ◽  
Author(s):  
Evamarie Hey ◽  
Ulrich Müller

The crystal structure of [MePh3P]2TiCl6 was determined from X-ray diffraction data and refined to a residual index of R = 0.065. It crystallizes in the space group P2i/n with two formula units per unit cell; the cell dimensions are a - 921, b = 1314, c = 1648 pm and y - 100.87°. The TiCl62- ion occupies an inversion center and has the shape of a slightly distorted octahedron with Ti-Cl distances between 233 and 235 pm.


Detailed interpretations of the X -ray diffraction patterns of fibres and sheets of 66 and 6.10 polyamides (polyhexam ethylene adipamide and sebacamide respectively) are proposed. The crystal structures of the two substances are completely analogous. Fibres of these two polyam ides usually contain two different crystalline forms, α and β, which are different packings of geometrically similar molecules; most fibres consist chiefly of the α form. In the case of the 66 polymer, fibres have been obtained in which there is no detectable proportion of the β form. Unit cell dimensions and the indices of reflexions for the α form were determined by trial, using normal fibre photographs, and were checked by using doubly oriented sheets set at different angles to the X -ray beam. The unit cell of the a form is triclinic, with a — 4·9 A, b = 5·4 A, c (fibre axis) = 17·2A, α = 48 1/2º, β = 77º, γ = 63 1/2º for the 66 polymer; a = 4·95A, b = 5·4A, c (fibre axes) = 22·4A, α = 49º, β = 76 1/2º, γ = 63 1/2º for the 6.10 polymer. One chain molecule passes through the cell in both cases. Atomic coordinates in occrystals were determined by interpretation of the relative intensities of the reflexions. The chains are planar or very nearly so; the oxygen atoms appear to lie a little off the plane of the chain. The molecules are linked by hydrogen bonds between C = 0 and NH groups, to form sheets. A simple packing of these sheets of molecules gives the α arrangement.


2007 ◽  
Vol 62 (6) ◽  
pp. 868-870 ◽  
Author(s):  
Johanna Kutuniva ◽  
Raija Oilunkaniemi ◽  
Risto S. Laitinen ◽  
Janne Asikkala ◽  
Johanna Kärkkäinen ◽  
...  

1-Butyl-2,3-dimethylimidazolium bromide {(bdmim)Br} (1) and iodide {(bdmim)I} (2) were prepared conveniently by the reaction of 1,2-dimethylimidazole and the corresponding 1-halobutane. The compounds were characterized by 1H and 13C{1H} NMR spectroscopy as well as by X-ray single crystal crystallography. 1 crystallizes in the monoclinic crystal system, space group P21/n, with Z = 4, and unit cell dimensions a = 8.588(2), b = 11.789(1), c = 10.737(2) Å, β = 91.62(3)°. Compound 2 crystallizes in the monoclinic crystal system, space group P21/c, with Z = 8, and unit cell dimensions a = 10.821(2), b = 14.221(3), c = 15.079(2) Å , β = 90.01(3)°. The lattices of the salts are built up of 1-butyl-2,3- dimethylimidazolium cations and halide anions. The cations of 1 form a double layer with the imidazolium rings stacked together due to π interactions. The Br− anions lie approximately in the plane of the imidazolium ring, and the closest interionic Br···H contacts span a range of 2.733(1) - 2.903(1) Å. Compound 2 shows no π stacking interactions. The closest interionic I···H contacts are 2.914(1) - 3.196(1) Å


1999 ◽  
Vol 55 (12) ◽  
pp. 2033-2034 ◽  
Author(s):  
Youwei Yan ◽  
Sanjeev Munshi ◽  
Ying Li ◽  
Kelly Ann D. Pryor ◽  
Frank Marsilio ◽  
...  

Crystals of the Escherichia coli UDP-MurNAc-tripeptide D-Ala-D-Ala-adding protein (MurF), which catalyzes the formation of the last metabolite of the bacterial cell-wall building block, have been grown in hanging-drop vapor-diffusion trials using PEG 8K as a precipitating agent. The crystals belong to hexagonal space group P61 or P65, with unit-cell dimensions a = b = 74, c = 425 Å. The asymmetric unit contains two molecules, with a crystal volume per protein mass (Vm ) of 3.4 Å3 Da−1 and a solvent content of about 64% by volume. A native data set to 2.8 Å resolution has been obtained from a frozen crystal using a synchrotron X-ray source.


Sign in / Sign up

Export Citation Format

Share Document