scholarly journals Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data

2013 ◽  
Vol 20 (5) ◽  
pp. 711-720 ◽  
Author(s):  
André Rothkirch ◽  
G. Diego Gatta ◽  
Mathias Meyer ◽  
Sébastien Merkel ◽  
Marco Merlini ◽  
...  

Fast detectors employed at third-generation synchrotrons have reduced collection times significantly and require the optimization of commercial as well as customized software packages for data reduction and analysis. In this paper a procedure to collect, process and analyze single-crystal data sets collected at high pressure at the Extreme Conditions beamline (P02.2) at PETRA III, DESY, is presented. A new data image format called `Esperanto' is introduced that is supported by the commercial software packageCrysAlisPro(Agilent Technologies UK Ltd). The new format acts as a vehicle to transform the most common area-detector data formatsviaa translator software. Such a conversion tool has been developed and converts tiff data collected on a Perkin Elmer detector, as well as data collected on a MAR345/555, to be imported into theCrysAlisProsoftware. In order to demonstrate the validity of the new approach, a complete structure refinement of boron-mullite (Al5BO9) collected at a pressure of 19.4 (2) GPa is presented. Details pertaining to the data collections and refinements of B-mullite are presented.

1995 ◽  
Vol 10 (4) ◽  
pp. 293-295 ◽  
Author(s):  
F. Brunet ◽  
C. Chopin ◽  
A. Elfakir ◽  
M. Quarton

A new diffraction pattern of the high-temperature and high-pressure polymorph Mg3(PO4)2-III (PDF 43-500) is given and indexed on the basis of a single-crystal structure refinement. It allows diffractogram indexing of the isostructural high-temperature and high-pressure form of Co3(PO4)2 (PDF 43-499).


Author(s):  
Sergey M. Aksenov ◽  
Elena A. Bykova ◽  
Ramiza K. Rastsvetaeva ◽  
Nikita V. Chukanov ◽  
Irina P. Makarova ◽  
...  

Labuntsovite-Fe, an Fe-dominant member of the labuntsovite subgroup, was first discovered in the Khibiny alkaline massif on Mt Kukisvumchorr [Khomyakov et al. (2001). Zap. Vseross. Mineral. Oba, 130, 36–45]. However, no data are published about the crystal structure of this mineral. Labuntsovite-Fe from a peralkaline pegmatite located on Mt Nyorkpakhk, in the Khibiny alkaline complex, Kola Peninsula, Russia, has been investigated by means of electron microprobe analyses, single-crystal X-ray structure refinement, and IR and Raman spectroscopies. Monoclinic unit-cell parameters of labuntsovite-Fe are: a = 14.2584 (4), b = 13.7541 (6), c = 7.7770 (2) Å, β = 116.893 (3)°; V = 1360.22 (9) Å3; space group C2/m. The structure was refined to final R 1 = 0.0467, wR 2 = 0.0715 for 3202 reflections [I > 3σ(I)]. The refined crystal chemical formula is (Z = 2): Na2K2Ba0.7[(Fe0.5Ti0.1Mg0.05)(H2O)1.3]{[Ti2(Ti1.9Nb0.1)(O,OH)4][Si4O12]2}·4H2O. The high-pressure in situ single-crystal X-ray diffraction study of the labuntsovite-Fe has been carried out in a diamond anvil cell. The labuntsovite-type structure is stable up to 23 GPa and phase transitions are not observed. Calculations using the BM3 equation of state resulted in the bulk modulus K = 72 (2) GPa, K′0 = 3.7 (2) and V 0 = 1363 (2) Å3. Compressing of the heteropolyhedral zeolite-like framework leads to the deformation of main structural units. Octahedral rods show the gradual increase of distortion and the wave-like character of rods becomes more distinct. Rod deformations result in the distortion of the silicon–oxygen ring which is not equal in different directions. Structural channels are characterized by a different ellipticity–pressure relationship: the cross-section of the largest channel I and channel II demonstrates the stability of the geometrical characteristics which practically do not depend on pressure: ∊channel I ≃ 0.85 (4) (cross-section is rather regular) and ∊channel II ≃ 0.52 (2) within the whole pressure range. However, channel III is characterized by the increasing of ellipticity with pressure (∊ = 0.40 → 0.10).


2013 ◽  
Vol 46 (2) ◽  
pp. 387-390 ◽  
Author(s):  
Hui Li ◽  
Xiaodong Li ◽  
Meng He ◽  
Yanchun Li ◽  
Jing Liu ◽  
...  

High-pressure single-crystal diffraction experiments often suffer from the crushing of single crystals due to the application of high pressure. Consequently, only diffraction data resulting from several particles in random orientations is available, which cannot be routinely indexed by commonly used methods designed for single-crystal data. A protocol is proposed to index such diffraction data. The techniques of powder pattern indexing are first used to propose the possible lattice parameters, and then a genetic algorithm is applied to determine the orientation of the reciprocal lattice for each of the particles. This protocol has been verified experimentally.


2009 ◽  
Vol 65 (5) ◽  
pp. 551-557 ◽  
Author(s):  
Kenny Ståhl ◽  
Rolf W. Berg ◽  
K. Michael Eriksen ◽  
Rasmus Fehrmann

The crystal structures of Cs2S2O7 at 120 and 273 K have been determined from X-ray single-crystal data. Caesium disulfate represents a new structure type with a uniquely high number of independent formula units at 120 K: In one part caesium ions form a tube surrounding the disulfate ions, [Cs8(S2O7)6+] n ; in the other part a disulfate double-sheet sandwiches a zigzagging caesium ion chain, [Cs2(S2O7)6−] n . Caesium disulfate shows an isostructural order–disorder transition between 230 and 250 K, where two disulfate groups become partially disordered above 250 K. The Cs+-ion arrangement shows a remarkable similarity to the high-pressure RbIV metal structure.


1995 ◽  
Vol 50 (9) ◽  
pp. 1377-1381 ◽  
Author(s):  
Olaf Reckeweg ◽  
H.-Jürgen Meyer

AbstractThe new compounds A4[Nb6Cl12(N3)6](H2O)2 (A = Rb, Cs) were synthesized from In4[Nb6Cl12Cl6] by substituting six terminal Cl ligands and the In+ ions in methanolic solution. An X-ray structure refinement was performed on single-crystal data of Rb4[Nb6Cl12(N3)6](H2O)2 (1) (space group P1̄, Z = 1, a = 912.5(1) pm, b = 937.2(1) pm, c = 1062.0(1) pm, α = 96.88(2)°, β = 101.89(1)°, γ = 101.44(2)°) and Cs4[Nb6Cl12(N3)6](H2O)2 (2) (space group PI, Z = 1, a = 920.9(5) pm, b = 947.9(7) pm, c = 1091.8(7) pm, α = 96.89(6)°, β = 103.35(5)°, γ = 101.60(5)°. Each of the centrosymmetric [Nb6Cl12(N3)6]4- ions of the isotypic compounds contains six terminal azide groups at the corners of the octahedral niobium cluster (d̄Nb-N = 226(1) pm (1), 225(1) pm (2), bond angles Nb-N-N 120-127°). The [Nb6Cl12(N3)6]4- ions are linked via Rb-N and Rb-Cl interactions of the Rb+ ions to form a three-dimensional structure. Crystals of the compounds react explosively on heating or mechanical pressure.


1999 ◽  
Vol 55 (5) ◽  
pp. 745-751 ◽  
Author(s):  
V. Kahlenberg

Three different tests on twinning by merohedry from the literature have been applied to single-crystal data sets of five different inorganic crystal structures. Although the three test procedures differ significantly with regard to their efficiency, in both detecting the existence of twinning and estimating the volume fractions of the twin individuals, they represent useful tools in the early stages of a structure analysis and should be applied routinely in the preliminary stage of a structure determination whenever a twinning by merohedry is possible.


Sign in / Sign up

Export Citation Format

Share Document