Die Synthese und Struktur von Clusteraziden: A4[Nb6Cl12(N3)6](H2O)2 mit A=Rb. Cs / Synthesis and Structure of the Cluster Azides: A4Nb6Cl12(N3)6](H2O)2 with A=Rb, Cs

1995 ◽  
Vol 50 (9) ◽  
pp. 1377-1381 ◽  
Author(s):  
Olaf Reckeweg ◽  
H.-Jürgen Meyer

AbstractThe new compounds A4[Nb6Cl12(N3)6](H2O)2 (A = Rb, Cs) were synthesized from In4[Nb6Cl12Cl6] by substituting six terminal Cl ligands and the In+ ions in methanolic solution. An X-ray structure refinement was performed on single-crystal data of Rb4[Nb6Cl12(N3)6](H2O)2 (1) (space group P1̄, Z = 1, a = 912.5(1) pm, b = 937.2(1) pm, c = 1062.0(1) pm, α = 96.88(2)°, β = 101.89(1)°, γ = 101.44(2)°) and Cs4[Nb6Cl12(N3)6](H2O)2 (2) (space group PI, Z = 1, a = 920.9(5) pm, b = 947.9(7) pm, c = 1091.8(7) pm, α = 96.89(6)°, β = 103.35(5)°, γ = 101.60(5)°. Each of the centrosymmetric [Nb6Cl12(N3)6]4- ions of the isotypic compounds contains six terminal azide groups at the corners of the octahedral niobium cluster (d̄Nb-N = 226(1) pm (1), 225(1) pm (2), bond angles Nb-N-N 120-127°). The [Nb6Cl12(N3)6]4- ions are linked via Rb-N and Rb-Cl interactions of the Rb+ ions to form a three-dimensional structure. Crystals of the compounds react explosively on heating or mechanical pressure.

1995 ◽  
Vol 50 (9) ◽  
pp. 1373-1376 ◽  
Author(s):  
Béla Baján ◽  
H.-Jürgen Meyer

AbstractThe syntheses of new compounds of the general formula A4[Nb6Cl18] (A = Ga, In, Tl) and A4[Ta6Cl18] (A = In, Tl) are reported. The indexing of their X-ray powder patterns was performed isotypically with K4Nb6Cl18]- A single-crystal structure refinement on In4[Ta6Cl18] gave the space group C2/m, Z - 2, a = 1077.7(3) pm, b = 1542.3(5) pm, c = 960.2(2) pm, β = 117.68(2) . The structure contains [Ta6Cl12Cl6]4- ions linked via I+ ions . In+ is situated in a strongly distorted coordination sphere of Cl- .


1976 ◽  
Vol 31 (3) ◽  
pp. 342-344 ◽  
Author(s):  
Volker Bätzel

Using three dimensional X-ray data collected on a four circle diffractometer, the structure of (CO)9Co3COBBr2N(C2H5)3 was solved by Patterson and Fourier methods. Least squares refinement with a block-diagonal matrix leads to a reliability index of R = 10.7%. Crystal data: α = 13.277(6) Å, b = 10.17(1) Å, c = 9.22(2) Å; α = 91.12(6)°, β = 87.61(4)°, γ = 98.79(2)°; space group P1̅; Z = 2; V = 1229,7 Å3; Dx = 1.97 gcm-3.


2011 ◽  
Vol 66 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Trinath Mishra ◽  
Rainer Pöttgen

The equiatomic rare earth compounds REPtZn (RE = Y, Pr, Nd, Gd-Tm) were synthesized from the elements in sealed tantalum tubes by high-frequency melting at 1500 K followed by annealing at 1120 K and quenching. The samples were characterized by powder X-ray diffraction. The structures of four crystals were refined from single-crystal diffractometer data: TiNiSi type, Pnma, a = 707.1(1), b = 430.0(1), c = 812.4(1) pm, wR2 = 0.066, 602 F2, 21 variables for PrPt1.056Zn0.944; a = 695.2(1), b = 419.9(1), c = 804.8(1) pm, wR2 = 0.041, 522 F2, 21 variables for GdPt0.941Zn1.059; a = 688.2(1), b = 408.1(1), c = 812.5(1) pm, wR2 = 0.041, 497 F2, 22 variables for HoPt1.055Zn0.945; a = 686.9(1), b = 407.8(1), c = 810.4(1) pm, wR2 = 0.061, 779 F2, 20 variables for ErPtZn. The single-crystal data indicate small homogeneity ranges REPt1±xZn1±x. The platinum and zinc atoms build up three-dimensional [PtZn] networks (265 - 269 pm Pt-Zn in ErPtZn) in which the erbium atoms fill cages with coordination number 16 (6 Pt + 6 Zn + 4 Er). Bonding of the erbium atoms to the [PtZn] network proceeds via shorter RE-Pt distances, i. e. 288 - 293 pm in ErPtZn.


Author(s):  
Joseph R. Smyth

AbstractTechniques allowing single-crystal investigations on the precession camera up to the melting point of platinum have been developed. The crystal structure of protoenstatite has been refined from three-dimensional intensity data obtained at 1100°C using a crystal of enstatite from the Norton County, Kansas meteorite. The space group is


2006 ◽  
Vol 62 (5) ◽  
pp. i117-i119 ◽  
Author(s):  
María A. Castellanos R. ◽  
Sylvain Bernès ◽  
Marina Vega-González

A high-precision structure of tetracobalt diniobium nonaoxide, Co4Nb2O9, is presented, based on X-ray single-crystal data. The space group and cation distribution previously obtained from powder data [Bertaut, Corliss, Forrat, Aleonard & Pauthenet (1961). J. Phys. Chem. Solids, 21, 234–251] are confirmed.


2007 ◽  
Vol 62 (4) ◽  
pp. 613-616 ◽  
Author(s):  
Wilfried Hermes ◽  
Ute Ch. Rodewald ◽  
Bernard Chevalier ◽  
Rainer Pötgena

The intermetallic cerium compounds CePdGe, CePtSi, and CePtGe were synthesized from the elements by arc-melting and subsequent annealing. The structure of CePtSi was refined from single crystal X-ray diffraction data: LaPtSi-type (ordered α-ThSi2 version), 141md, a = 419.6(1) and c = 1450.0(5) pm, wR2 = 0.0490, 362 F2 values and 16 variables. The Pt-Si distances within the three-dimensional [PtSi] network are 242 pm, indicating strong Pt-Si interactions. Hydrogenation of the three compounds at 623 K and 4 MPa H2 gave no indication for hydride formation.


2019 ◽  
Vol 74 (9) ◽  
pp. 693-698 ◽  
Author(s):  
Birgit Heying ◽  
Jutta Kösters ◽  
Rainer Pöttgen

AbstractThe indium-rich intermetallic compound CaPtIn4 is formed in a peritectic reaction of CaPtIn2 and indium metal at T = 670 K (14 days annealing). CaPtIn4 crystallizes with the YNiAl4-type structure, space group Cmcm, which was refined from single crystal X-ray diffractometer data: a = 446.3(5), b = 1659.50(18), c = 756.8(8) pm, wR2 = 0.0646, 640 F2 values and 24 variables. Geometrically one can describe the CaPtIn4 structure as an intergrowth variant of CaPtIn2 (MgCuAl2 type) and indium slabs. The three-dimensional [PtIn4] polyanionic network shows short Pt–In distances of 269–280 pm and a broader range of In–In distances (304–378 pm) within substantially distorted In@In8 cubes.


2007 ◽  
Vol 62 (8) ◽  
pp. 1059-1070 ◽  
Author(s):  
Marco Wendorff ◽  
Caroline Röhr

In the ternary system Ba-Al-Ge new intermetallic compounds which are lying on or close to the binary section BaAl2 -BaGe2 were synthesized from the elements and characterized on the basis of X-ray single crystal data. The Al-content x in the compounds BaAlxGe2−x forming the AlB2 structure type ranges from x = 1.4 [BaAl1.4Ge0.6 space group P6/mmm, a = 443.5(1), c = 512.4(1) pm, Z = 1, R1 = 0.0222] to the stoichiometric ordered compound BaAlGe [space group P6̅m2, a = 434.9(1), c = 513.6 pm, Z = 1, R1 = 0.0252]. In the two new Ge-rich barium intermetallics Ba5Al2Ge7 [space group C2/m, a = 859.8(4), b = 1031.5(4), c = 1847.8(6) pm, β = 103.23(3)°, Z = 4, R1 = 0.0553] and Ba7Al4Ge9 [space group Fmm2, a = 1032.7(5), b = 2559(2), c = 862.1(4) pm, Z = 4, R1 = 0.1197] complex Al/Ge polyanions are present, which consist of (1) Al/Ge-ribbons of condensed planar sixmembered rings comparable to the anions in Ba3Al2Ge2, and (2) [Ge/Al]5 clusters comparable to the anions in the tetrelides Ba3M5. The building units (1) and (2) are connected via Al-Ge bonds to form complex ribbons in the case of Ba5Al2Ge7 and sheets in the case of Ba7Al4Ge9. The electron count in the two compounds supports an interpretation of the structures according to the Zintl concept and the Wades rules. The small formal electron excess, caused by the incomplete transfer of charge from Ba towards the Al/Ge polyanions, decreases with the Ge content of the compound.


2008 ◽  
Vol 63 (9) ◽  
pp. 1127-1130 ◽  
Author(s):  
Falko M. Schappacher ◽  
Ute Ch. Rodewald ◽  
Rainer Pöttgen

New intermetallic compounds RE4TCd (RE = Y, La-Nd, Sm, Gd-Tm, Lu; T = Ni, Pd, Ir, Pt) were synthesized by melting of the elements in sealed tantalum tubes in a highfrequency furnace. They crystallize with the Gd4RhIn-type structure, space group F 4̄3m, Z = 16. The four gadolinium compounds were characterized by single crystal X-ray diffractometer data: a = 1361.7(1) pm, wR2 = 0.062, 456 F2 values, 19 variables for Gd4NiCd; a = 1382.1(2) pm, wR2 = 0.077, 451 F2 values, 19 variables for Gd4PdCd; a = 1363.6(2) pm, wR2 = 0.045, 494 F2 values, 19 variables for Gd4IrCd; a = 1379.0(1) pm, wR2 = 0.045, 448 F2 values, 19 variables for Gd4PtCd. The rare earth atoms build up transition metal-centered trigonal prisms which are condensed via common corners and edges, leading to three-dimensional adamantane-related networks. The cadmium atoms form Cd4 tetrahedra which fill voids left in the prisms’ network.


2015 ◽  
Vol 70 (12) ◽  
pp. 903-909 ◽  
Author(s):  
Birgit Gerke ◽  
Rainer Pöttgen

AbstractNew alkaline earth-gold-aluminides were synthesized from the elements in sealed tantalum or quartz ampoules in muffle furnaces at maximum annealing temperatures of 1325 K. The structures were refined from single crystal X-ray diffractometer data. SrAu3Al2 crystallizes in an ordered version of the LT-SrZn5 structure: Pnma, a = 1315.9(3), b = 549.0(1), c = 684.5(3) pm, wR2 = 0.0232, 930 F2 values, 35 variables. SrAu2.83Al2.17 (a = 1065.0(2), b = 845.0(2), c = 548.1(1) pm, wR2 = 0.0416, 452 F2 values, 22 variables) and BaAu2.89Al2.11 (a = 1096.1(3), b = 835.7(3), c = 554.0(1) pm, wR2 = 0.0280, 501 F2 values, 22 variables) both adopt the BaZn5 type, space group Cmcm with Au/Al mixing on the 4c site. The gold and aluminum atoms in both types form three-dimensional networks of condensed tetrahedra with the strontium and barium atoms in large cavities. BaAu7.09Al5.91 is a new member of the NaZn13 type: Fm3̅c, a = 1257.6(2) pm, wR2 = 0.0267, 168 F2 values, 12 variables. Both the 96i and 8b sites show Au/Al mixing. The crystal chemical details are discussed.


Sign in / Sign up

Export Citation Format

Share Document