scholarly journals The small-angle neutron scattering instrument D33 at the Institut Laue–Langevin

2016 ◽  
Vol 49 (1) ◽  
pp. 1-14 ◽  
Author(s):  
C. D. Dewhurst ◽  
I. Grillo ◽  
D. Honecker ◽  
M. Bonnaud ◽  
M. Jacques ◽  
...  

The D33 small-angle neutron scattering (SANS) instrument at the Institut Laue–Langevin (ILL) is the most recent SANS instrument to be built at the ILL. In a project beginning in 2005 and lasting seven years, the concept has been developed, and the instrument designed, manufactured and installed. D33 was commissioned with neutrons during the second half of 2012, fully entering the ILL user programme in 2013. The scientific case required that D33 should provide a wide dynamic range of measured scattering vector magnitudeq, flexibility with regard to the instrument resolution, and the provision of polarized neutrons and3He spin analysis to facilitate and expand studies in magnetism. In monochromatic mode, a velocity selector and a flexible system of inter-collimation apertures define the neutron beam. A double-chopper system enables a time-of-flight (TOF) mode of operation, allowing an enhanced dynamicqrange (qmax/qmin) and a flexible wavelength resolution. Two large multitube detectors extend the dynamicqrange further, givingqmax/qmin≃ 25 in monochromatic mode and a very largeqmax/qmin> 1000 in TOF mode. The sample zone is large and flexible in configuration, accommodating complex and bulky sample environments, while the position of D33 is such as to allow high magnetic fields at the sample position. The instrument is of general purpose with a performance rivalling that of D22, and is well adapted for SANS studies in scientific disciplines as diverse as solution scattering in biology and soft matter and studies of physics, materials science and magnetism. This article provides a detailed technical description of D33 and its performance and characterization of the individual components, and serves as a technical reference for users of the instrument.

2013 ◽  
Vol 46 (5) ◽  
pp. 1361-1371 ◽  
Author(s):  
B. Hammouda ◽  
D. F. R. Mildner ◽  
A. Brûlet ◽  
S. Desert

Neutron focusing leads to significant gains in flux-on-sample in small-angle neutron scattering and very small angle neutron scattering instruments. Understanding the out-of-focus condition is necessary for less than optimal conditions such as for short instruments and low neutron wavelengths. Neutron focusing is investigated using a three-pronged approach. The three methods are analytical calculations, resolution measurements and computer simulations. A source aperture containing a single small-size hole and a sample aperture containing multiple holes are used to produce multiple spots on the high-resolution neutron detector. Lens focusing elongates off-axis spots in the radial direction. The standard deviation for the size of each spot is estimated using these three approaches. Varying parameters include the neutron wavelength, the number of focusing lenses and the location of holes on the sample aperture. Enough agreement for the standard deviation of the individual neutron beams was found between the calculations and the measurements to give confidence in this approach. Good agreement was found between the standard deviations obtained from calculations and simulations as well. Excellent agreement was found for the mean location of these individual spots.


Soft Matter ◽  
2015 ◽  
Vol 11 (27) ◽  
pp. 5580-5581
Author(s):  
Richard M. Epand ◽  
Diana Bach ◽  
Ellen Wachtel

As consistently described in the literature, the solubility limit of cholesterol in phospholipid bilayers is defined by its phase separation and crystallization.


2018 ◽  
Vol 51 (6) ◽  
pp. 1605-1615
Author(s):  
Zhiyuan Wang ◽  
Huarui Wu ◽  
Liang Chen ◽  
Liangwei Sun ◽  
Xuewu Wang

The neutron flux of the Compact Pulsed Hadron Source (CPHS) is about 2–3 orders of magnitude lower than that of large neutron sources, which means that the beam intensity should be improved to achieve good statistics. Multi-pinhole collimation can be used to obtain a lower Q with an acceptable beam intensity in a very small angle neutron scattering (VSANS) instrument and a higher beam intensity for a larger sample size in a small-angle neutron scattering (SANS) instrument. A new nine-pinhole structure is used in a SANS instrument at CPHS to achieve an acceptable range and resolution of Q and a higher beam intensity compared to single-pinhole collimation. The crosstalk issue associated with multi-pinhole collimation is addressed using an optimized algorithm to achieve a higher safety margin and a larger pinhole size with a higher beam intensity at the sample. Different collimator aperture structures are compared on the basis of their noise production. Experiments are performed to verify the theory of calculating reflection noise from the inner surface of the collimator's aperture and parasitic noise from the beveled collimator structure. From a simulated SANS experiment using cold neutrons in the SANS instrument, it is clarified that multi-pinhole collimators with an opening angle on the downstream side have better performance than those with an opening angle on the upstream side and straight-cut collimators. Compared with a single-pinhole collimation system, a nine-pinhole collimation system increases the intensity at the sample by approximately sevenfold when the sample size is increased by 20-fold for CPHS-SANS, and the signal-to-noise ratio is improved by exploiting a specific collimator aperture structure. Our goal is to install a multi-pinhole collimator based SANS instrument at CPHS in the future, and it is hoped that these results will serve to promote the utilization of multi-pinhole collimation systems at other facilities.


Soft Matter ◽  
2019 ◽  
Vol 15 (31) ◽  
pp. 6369-6374 ◽  
Author(s):  
Sofi Nöjd ◽  
Christopher Hirst ◽  
Marc Obiols-Rabasa ◽  
Julien Schmitt ◽  
Aurel Radulescu ◽  
...  

Small-angle neutron scattering experiments on microgels provide information about the response of the individual particles to an external electric field.


2021 ◽  
pp. 1-5
Author(s):  
Huarui Wu ◽  
Weihang Hong ◽  
Yao Zhang ◽  
Pulin Bai ◽  
Wenbo Mo ◽  
...  

Developing small-angle neutron scattering techniques at compact accelerator-driven neutron sources (CANS) is of great importance for expanding the user community and advancing CANS capability. At the Compact Pulsed Hadron Source (CPHS) at Tsinghua University, neutron-focusing mirrors are under intensive research to address the challenge. A grazing-incidence focusing SANS (gif-SANS) project is initialized. It employs a nested supermirror assembly with a large collecting area to achieve ⩾ 10 5 n/s neutron intensity at Q min ⩽ 0.007 Å − 1 . It will equip two detectors, one being a 3He detector for normal Q-range measurements, and the other being a high-resolution detector for extending the Q min down to 10 − 3 Å − 1 . In this work, we present the conceptual design of the gif-SANS at CPHS. Such a scheme is conducive to enable high-performance SANS measurements at CANS.


Neutron News ◽  
2008 ◽  
Vol 19 (3) ◽  
pp. 20-21 ◽  
Author(s):  
K.C. Littrell ◽  
K.M. Atchley ◽  
G. Cheng ◽  
Y.B. Melnichenko ◽  
G.D. Wignall

2021 ◽  
Vol 11 (3) ◽  
pp. 1216
Author(s):  
Xingxing Yao ◽  
Blake Avery ◽  
Miljko Bobrek ◽  
Lisa Debeer-Schmitt ◽  
Xiaosong Geng ◽  
...  

In an effort to upgrade and provide a unified and improved instrument control and data acquisition system for the Oak Ridge National Laboratory (ORNL) small-angle neutron scattering (SANS) instrument suite—biological small-angle neutron scattering instrument (Bio-SANS), the extended q-range small-angle neutron scattering diffractometer (EQ-SANS), the general-purpose small-angle neutron scattering diffractometer (GP-SANS)—beamline scientists and developers teamed up and worked closely together to design and develop a new system. We began with an in-depth analysis of user needs and requirements, covering all perspectives of control and data acquisition based on previous usage data and user feedback. Our design and implementation were guided by the principles from the latest user experience and design research and based on effective practices from our previous projects. In this article, we share details of our design process as well as prominent features of the new instrument control and data acquisition system. The new system provides a sophisticated Q-Range Planner to help scientists and users plan and execute instrument configurations easily and efficiently. The system also provides different user operation interfaces, such as wizard-type tool Panel Scan, a Scripting Tool based on Python Language, and Table Scan, all of which are tailored to different user needs. The new system further captures all the metadata to enable post-experiment data reduction and possibly automatic reduction and provides users with enhanced live displays and additional feedback at the run time. We hope our results will serve as a good example for developing a user-friendly instrument control and data acquisition system at large user facilities.


2019 ◽  
Vol 52 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Anna Sokolova ◽  
Andrew E. Whitten ◽  
Liliana de Campo ◽  
Jason Christoforidis ◽  
Andrew Eltobaji ◽  
...  

BILBY is a recently constructed and commissioned time-of-flight small-angle neutron scattering instrument, operated by the Australian Centre for Neutron Scattering at the Australian Nuclear Science and Technology Organisation (ANSTO). BILBY provides a wide accessible q range (q ≃ 1.0 × 10−3 Å−1 to ∼1.8 Å−1) and variable wavelength resolution (Δλ/λ ≃ 3–30%) to complement the other small-angle and ultra-small-angle neutron scattering capabilities available at ANSTO. Since its construction, BILBY has been used to study samples from a wide range of scientific disciplines, including biology, chemistry, physics and materials science. This article describes the BILBY design and components, and shows data collected from a number of reference samples.


Sign in / Sign up

Export Citation Format

Share Document