X-ray scattering profiles: revealing the porosity gradient in porous silicon

2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Cosmin Romanitan ◽  
Pericle Varasteanu ◽  
Daniela C. Culita ◽  
Alexandru Bujor ◽  
Oana Tutunaru

Porous silicon layers with different porosities were prepared by adjusting the anodization current density of the electrochemical etching process, starting from highly doped p-type crystalline silicon wafers. The microstructural parameters of the porous layers were assessed by high-resolution X-ray diffraction, total external reflection, scanning electron microscopy and nitrogen adsorption–desorption analysis. Furthermore, both the surface porosity and the mean porosity for the entire volume of the samples were estimated by employing total external reflection measurements and X-ray reciprocal-space mapping, respectively. The results clearly indicate that the surface porosity is different from the mean porosity, and the presence of a depth porosity gradient is suggested. To evaluate the porosity gradient in a nondestructive way, a new laboratory method using the grazing-incidence X-ray diffraction technique is reported. It is based on the analysis of the X-ray scattering profiles of the porous layers to obtain the static Debye–Waller factors. In this way, a description of the porosity gradient in a quantitative framework becomes possible, and, as a result, it was shown that the porosity increases exponentially with the X-ray penetration depth. Moreover, a strong dependence between the porosity gradient and the anodization current was demonstrated. Thus, in the case of the lowest anodization current (e.g. 50 mA cm−2) a variation of only 15% of the porosity from the surface to the interface is found, but when applying a high anodization current of 110 mA cm−2 the porosity close to the bulk interface is almost three times higher than at the surface.

1992 ◽  
Vol 283 ◽  
Author(s):  
H. Franz ◽  
V. Petrova-Koch ◽  
T. Muschik ◽  
V. Lehmann ◽  
J. Peisl

ABSTRACTWe studied the microstructure of two types of light emitting porous silicon (PS), as-etched and rapid thermal oxidized and of material prepared according to the siloxene recipe by Small-Angle X-Ray Scattering (SAXS). In all three types of samples we found particles with nanometer dimensions. The average particle size in as-etched PS is ingood agreement with results achieved by TEM and X-ray diffraction. Shape analysis shows, that the PS skeleton consists of cylindrical shaped particles with an average heigth of 20Å and a diameter of 40 Å.


1998 ◽  
Vol 536 ◽  
Author(s):  
V. Chamard ◽  
G. Dolino ◽  
J. Eymery

AbstractX-ray reflectometry is used to study the first stages of formation of thin n-type porous silicon layers. Results on classical n−-type porous silicon prepared under illumination are first reported. Then, the effect of the illumination during the formation is observed by comparing n+/− - type samples prepared in darkness or under illumination. X-ray specular reflectivity measurements allow to observe an increase of the surface porosity even for the short formation times and a macroporous layer under the nanoporous layer is also identified for illuminated samples. The presence of a crater at the top of the layer is observed by profilometer measurements, especially in the case of illuminated samples. Specular and diffuse x-ray scattering results show important effects of light during the porous silicon formation.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 364-372 ◽  
Author(s):  
P. Zipper ◽  
R. Wilfing ◽  
M. Kriechbaum ◽  
H. Durchschlag

Abstract The sulfhydryl enzyme malate synthase from baker’s yeast was X-irradiated with 6 kGy in air-saturated aqueous solution (enzyme concentration: ≃ 10 mg/ml; volume: 120 μl), in the absence or presence of the specific scavengers formate, superoxide dismutase, and catalase. After X-irradiation, a small aliquot of the irradiated solutions was tested for enzymic activity while the main portion was investigated by means of small-angle X-ray scattering. Additionally, an unir­radiated sample without additives was investigated as a reference. Experiments yielded the fol­lowing results: 1. X-irradiation in the absence of the mentioned scavengers caused considerable aggregation, fragmentation, and inactivation of the enzyme. The dose Dt37 for total (= repairable + non­-repayable) inactivation resulted as 4.4 kGy. The mean radius of gyration was found to be about 13 nm. The mean degree of aggregation was obtained as 5.7, without correction for fragmenta­tion. An estimation based on the thickness factor revealed that about 19% of material might be strongly fragmented. When this amount of fragments was accordingly taken into account, a value of 7.1 was obtained as an upper limit for the mean degree of aggregation. The observed retention of the thickness factor and the finding of two different cross-section factors are in full accord with the two-dimensional aggregation model established previously (Zipper and Durchschlag, Radiat. Environ. Biophys. 18, 99 - 121 (1980)). 2. The presence of catalytic amounts of superoxide dismutase and/or catalase, in the absence of formate, during X-irradiation reduced both aggregation and inactivation significantly. 3. The presence of formate (10 or 100 mᴍ) during X-irradiation led to a strong decrease of aggregation and inactivation. This effect was more pronounced with the higher formate concen­tration or when superoxide dismutase and/or catalase were simultaneously present during X-irradiation. The presence of formate also reduced the amount of fragments significantly. 4. The results clearly show that the aggregation and inactivation of malate synthase upon X-irradiation in aqueous solution are mainly caused by OH·; to a minor extent O·̄2 and H2O2 are additionally involved in the damaging processes.


Polymer ◽  
2001 ◽  
Vol 42 (21) ◽  
pp. 8965-8973 ◽  
Author(s):  
Zhi-Gang Wang ◽  
Xuehui Wang ◽  
Benjamin S. Hsiao ◽  
Saša Andjelić ◽  
Dennis Jamiolkowski ◽  
...  

2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Peter Nadazdy ◽  
Jakub Hagara ◽  
Petr Mikulik ◽  
Zdenko Zaprazny ◽  
Dusan Korytar ◽  
...  

A four-bounce monochromator assembly composed of Ge(111) and Ge(220) monolithic channel-cut monochromators with V-shaped channels in a quasi-dispersive configuration is presented. The assembly provides an optimal design in terms of the highest transmittance and photon flux density per detector pixel while maintaining high beam collimation. A monochromator assembly optimized for the highest recorded intensity per detector pixel of a linear detector placed 2.5 m behind the assembly was realized and tested by high-resolution X-ray diffraction and small-angle X-ray scattering measurements using a microfocus X-ray source. Conventional symmetric and asymmetric Ge(220) Bartels monochromators were similarly tested and the results were compared. The new assembly provides a transmittance that is an order of magnitude higher and 2.5 times higher than those provided by the symmetric and asymmetric Bartels monochromators, respectively, while the output beam divergence is twice that of the asymmetric Bartels monochromator. These results demonstrate the advantage of the proposed monochromator assembly in cases where the resolution can be partially sacrificed in favour of higher transmittance while still maintaining high beam collimation. Weakly scattering samples such as nanostructures are an example. A general advantage of the new monochromator is a significant reduction in the exposure time required to collect usable experimental data. A comparison of the theoretical and experimental results also reveals the current limitations of the technology of polishing hard-to-reach surfaces in X-ray crystal optics.


1988 ◽  
Vol 21 (1) ◽  
pp. 72-74 ◽  
Author(s):  
A. Zarka ◽  
B. Capelle ◽  
M. Petit ◽  
G. Dolino ◽  
P. Bastie ◽  
...  

X-ray scattering is used to demonstrate the existence in quartz of an incommensurate phase with a single modulation when a uniaxial stress is applied in the X Y plane. Good agreement with earlier neutron scattering experiments is found.


Sign in / Sign up

Export Citation Format

Share Document